Naslov: | Sets of Invariant Measures and Cesaro Stability |
---|
Avtorji: | ID Kryzhevich, Sergey, University of Nova Gorica (Avtor) |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | We take a space X of dynamical systems that could be: homeomorphisms or continuous maps of a compact metric space K or diffeomorphisms of a smooth manifold or actions of an amenable group. We demonstrate that a typical dynamical system of X is a continuity point for the set of probability invariant measures considered as a function of a map, let Y be the set of all such continuity points. As a corollary we prove that for typical dynamical systems average values of continuous functions calculated along trajectories do not drastically change if the system is perturbed. |
---|
Ključne besede: | ergodic theory, invariant measures, shadowing, stability, tolerance stability, topological dynamics |
---|
Leto izida: | 2017 |
---|
Št. strani: | 133-147 |
---|
Številčenje: | 3 |
---|
PID: | 20.500.12556/RUNG-3289-b78bff31-8f87-688a-83c3-7caafab9609a |
---|
COBISS.SI-ID: | 4924923 |
---|
NUK URN: | URN:SI:UNG:REP:CGPCG6IR |
---|
Datum objave v RUNG: | 02.10.2017 |
---|
Število ogledov: | 4567 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |