Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | SLO | ENG

Naslov:Binary division fuzzy C-means clustering and particle swarm optimization based efficient intrusion detection for e-governance systems
Avtorji:Gupta, Rajan (Oseba, ki intervjuva)
Muttoo, Sunil K. (Avtor)
Pal, Saibal K. (Avtor)
Datoteke:Gradivo nima datotek. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. Povezava se odpre v novem oknu
Jezik:Angleški jezik
Vrsta gradiva:Neznano ()
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:UNG - Univerza v Novi Gorici
Opis:With the rapid rise of technology, many unusual and unwanted patterns have been observed in the communication network andrespective systems. This may be attributed to the increase of external threats that cause many security concerns. Such anomalies and unusual behavior lead to a strong need of studying and designing the Intrusion Detection Systems and Clustering. Currently,a variety of clustering methods and their combinations are used to develop an efficient intrusion detection system, but some metrics like low detection rate and high false alarm rate make these models unsatisfactory. The problem of local minima for clustering technique makes their search ability less efficient. An evolutionary technique called particle swarm optimization algorithm, that is based on swarm intelligence, shows a high global maxima search capability. In this paper, these two techniques have been combined to present a novel approach called fuzzy based particle swarm algorithm for the implementation of intrusion detection system. The experiment was conducted on a new data set called Kyoto data set with more number of anomalies. The obtained results were compared with two traditional clustering techniques based on K-Means and Fuzzy C-Means. It was observed that the proposed algorithm outperformed the other two traditional methods on the basis of the Detection Rate and False Alarm rate. In past some researchers have presented the combination of Fuzzy Based Particle Swarm Optimization algorithm to improve the intrusion detection rate,but this rate has been further improved because the algorithm performance depends on the termination condition and the fitness function value which are new in the proposed algorithm. Moreover, cluster numbers have been considered differently in the past, whereas the proposed algorithm works only on binary clustering.
Ključne besede:intrusion detection, fuzzy C-means clustering, particle swarm optimization, detection rate, e-governance
Leto izida:2016
Št. strani:str. 672-681
Številčenje:no. 8, Vol. 11
COBISS_ID:58014723 Povezava se odpre v novem oknu
UDK:004
ISSN pri članku:1828-6003
URN:URN:SI:UNG:REP:MW3EYPDJ
DOI:10.15866/irecos.v11i8.9546 Povezava se odpre v novem oknu
Število ogledov:714
Število prenosov:0
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Gradivo ni uvrščeno v področja.
:
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:International review on computers and software
Skrajšan naslov:Int. Rev. Comp. Softw.
Založnik:Praise Worthy Prize
ISSN:1828-6003
COBISS.SI-ID:21423143 Novo okno

Nazaj