Naslov: | Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation |
---|
Avtorji: | ID Swapna, Mohanachandran Nair Sindhu, UNIVERSITY OF KERALA (Avtor) ID VIMAL, RAJ, UNIVERSITY OF KERALA (Avtor) ID A, RENJINI, UNIVERSITY OF KERALA (Avtor) ID S, SREEJYOTHI, UNIVERSITY OF KERALA (Avtor) ID S, SANKARARMAN, UNIVERSITY OF KERALA (Avtor) |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | The development of novel digital auscultation techniques has become highly significant in the context
of the outburst of the pandemic COVID 19. The present work reports the spectral, nonlinear time series,
fractal, and complexity analysis of vesicular (VB) and bronchial (BB) breath signals. The analysis is carried
out with 37 breath sound signals. The spectral analysis brings out the signatures of VB and BB through
the power spectral density plot and wavelet scalogram. The dynamics of airflow through the respiratory tract during VB and BB are investigated using the nonlinear time series and complexity analyses in
terms of the phase portrait, fractal dimension, Hurst exponent, and sample entropy. The higher degree
of chaoticity in BB relative to VB is unwrapped through the maximal Lyapunov exponent. The principal
component analysis helps in classifying VB and BB sound signals through the feature extraction from the
power spectral density data. The method proposed in the present work is simple, cost-effective, and sensitive, with a far-reaching potential of addressing and diagnosing the current issue of COVID 19 through
lung auscultation. |
---|
Ključne besede: | Breath sound analysis, Fractal dimension, Nonlinear time series analysis, Sample entropy, Hurst exponent, Principal component analysis |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Leto izida: | 2020 |
---|
Št. strani: | 8 |
---|
Številčenje: | 11, 140 |
---|
PID: | 20.500.12556/RUNG-7396 |
---|
COBISS.SI-ID: | 112999171 |
---|
DOI: | 10.1016/j.chaos.2020.110246 |
---|
NUK URN: | URN:SI:UNG:REP:77BPWAEO |
---|
Datum objave v RUNG: | 28.06.2022 |
---|
Število ogledov: | 2455 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |