Naslov: | Bioacoustic signal analysis through complex network features |
---|
Avtorji: | ID Swapna, Mohanachandran Nair Sindhu, UNIVERSITY OF KERALA (Avtor) ID VIMAL, RAJ, UNIVERSITY OF KERALA (Avtor) ID S, Sankararaman, UNIVERSITY OF KERALA (Avtor) |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | The paper proposes a graph-theoretical approach to auscultation, bringing out the potential of graph features in
classifying the bioacoustics signals. The complex network analysis of the bioacoustics signals - vesicular (VE) and
bronchial (BR) breath sound - of 48 healthy persons are carried out for understanding the airflow dynamics
during respiration. The VE and BR are classified by the machine learning techniques extracting the graph features
– the number of edges (E), graph density (D), transitivity (T), degree centrality (Dcg) and eigenvector centrality
(Ecg). The higher value of E, D, and T in BR indicates the temporally correlated airflow through the wider
tracheobronchial tract resulting in sustained high-intense low-frequencies. The frequency spread and high-frequencies in VE, arising due to the less correlated airflow through the narrow segmental bronchi and lobar,
appears as a lower value for E, D, and T. The lower values of Dcg and Ecg justify the inferences from the spectral
and other graph parameters. The study proposes a methodology in remote auscultation that can be employed in
the current scenario of COVID-19. |
---|
Ključne besede: | Bioacoustic signal, Graph theory, Complex network, Lung auscultation |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Leto izida: | 2022 |
---|
Št. strani: | 8 |
---|
Številčenje: | 6, 145 |
---|
PID: | 20.500.12556/RUNG-7441 |
---|
COBISS.SI-ID: | 113350147 |
---|
DOI: | 10.1016/j.compbiomed.2022.105491 |
---|
NUK URN: | URN:SI:UNG:REP:PERBKSNM |
---|
Datum objave v RUNG: | 30.06.2022 |
---|
Število ogledov: | 1997 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |