Naslov: | Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: A machine learning approach |
---|
Avtorji: | ID Swapna, Mohanachandran Nair Sindhu, UNIVERSITY OF KERALA (Avtor), et al. |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | The paper delves into the plausibility of applying fractal, spectral, and nonlinear time series analyses for lung auscultation. The thirty-five sound signals of bronchial (BB) and pulmonary crackle (PC) analysed by fast Fourier transform and wavelet not only give the details of number, nature, and time of occurrence of the frequency components but also throw light onto the embedded air flow during breathing. Fractal dimension, phase portrait, and sample entropy help in divulging the greater randomness, antipersistent nature, and complexity of airflow dynamics in BB than PC. The potential of principal component analysis through the spectral feature extraction categorises BB, fine crackles, and coarse crackles. The phase portrait feature-based supervised classification proves to be better compared to the unsupervised machine learning technique. The present work elucidates phase portrait features as a better choice of classification, as it takes into consideration the temporal correlation between the data points of the time series signal, and thereby suggesting a novel surrogate method for the diagnosis in pulmonology. The study suggests the possible application of the techniques in the auscultation of coronavirus disease 2019 seriously affecting the respiratory system. |
---|
Ključne besede: | Auscultation, Biomedical signal processing, Fractals, Machine learning, Phase portrait, Pulmonary crackle. |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Leto izida: | 2021 |
---|
Št. strani: | 103-115 |
---|
Številčenje: | 2, 47 |
---|
PID: | 20.500.12556/RUNG-7447 |
---|
COBISS.SI-ID: | 113435395 |
---|
DOI: | 10.1007/s10867-021-09567-8 |
---|
NUK URN: | URN:SI:UNG:REP:B9DVITTC |
---|
Datum objave v RUNG: | 30.06.2022 |
---|
Število ogledov: | 1761 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |