Naslov: | Selenium affects mercury ligand environment in terrestrial food chain – a XAS study |
---|
Avtorji: | ID Vogel Mikuš, Katarina, Uni-Lj (Avtor) ID Kodre, Alojz, Uni-Lj (Avtor) ID Arčon, Iztok, UNG (Avtor) ID Kavčič, Anja, Uni-Lj (Avtor) |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.12 - Objavljeni povzetek znanstvenega prispevka na konferenci |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | Selenium (Se) supplied in inorganic form (as selenate or selenite) was shown to decrease mercury (Hg) toxicity by forming HgSe in soils as well as in animal and human tissues, while for plants there is no evidence of Hg-Se complexation. Although Se in not an essential element for plants it was shown to counteract various abiotic stresses when applied at trace amounts. The aim of this work was therefore to study physiological responses and Hg speciation in plant/ fungi-animal food chain. Lettuce (Lactuca sativa) and porcini mushrooms (Boletus edulis) were taken as model plant/ fungal species and Spanish slug (Arion vulgaris) as a model animal species. The plants, fed to the slugs, were grown in HgCl2 contaminated soil or soil from the vicinity of Hg mine in Idrija with traces of HgS and methyl Hg). Physiological parameters of plants and slugs were monitored during the experiment. At the end the biological material was frozen in LN2 and freeze dried. Hg L3-edge (12284 eV) XANES and EXAFS spectra of the biological samples and standards were measured at liquid helium temperature in fluorescence detection mode at the BM30B beamline of the ESRF synchrotron in Grenoble, using the 30-segment germanium solid state detector [1]. The results showed that addition of Se alleviated Hg toxic effects in the food chain started at HgCl2-contaminated soil, while for the soil from Idrija, containing low amounts of highly toxic methyl-Hg, the beneficial effect was less prominent [2]. No Hg-Se complexes were detected in plants, while in mushrooms and slugs the complexation was confirmed. Addition of Se to the plants, however, changed Hg ligand environment in plant tissues from sulphur to nitrogen ligands. Hg and Se both target the -SH functional groups in the plant tissues, so toxic effects of Hg are rather enhanced than alleviated by addition of Se. Nevertheless, the addition of Se to the plants is beneficial for higher trophic levels and lowers Hg toxicity for the primary consumers, the slugs. |
---|
Ključne besede: | mercury, toxicity, ligand environment, XANES, EXAFS, food chain, plant, slug, fungi |
---|
Leto izida: | 2022 |
---|
Št. strani: | 1 |
---|
PID: | 20.500.12556/RUNG-7772 |
---|
COBISS.SI-ID: | 132217603 |
---|
NUK URN: | URN:SI:UNG:REP:PP5LDRTI |
---|
Datum objave v RUNG: | 05.12.2022 |
---|
Število ogledov: | 2211 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |