Naslov: | L (D, 2, 1)-labeling of Square Grid |
---|
Avtorji: | ID Atta, Soumen, Department of Computer Science and Engineering, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India (Avtor) ID Sinha Mahapatra, Priya Ranjan, Department of Computer Science and Engineering, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India (Avtor) |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | For a fixed integer $D (\geq 3)$ and $\lambda$ $\in$ $\mathbb{Z}^+$, a $\lambda$-$L(D, 2, 1)$-$labeling$ of a graph $G = (V, E)$ is the problem of assigning non-negative integers (known as labels) from the set $\{0, \ldots, \lambda\}$ to the vertices of $G$ such that if any two vertices in $V$ are one, two and three distance apart from each other then the assigned labels to these vertices must have a difference of at least $D$, 2 and 1 respectively. The vertices which are at least $4$ distance apart can receive the same label. The minimum value among all the possible values of $\lambda$ for which there exists a $\lambda$-$L(D, 2, 1)$-$labeling$ is known as the labeling number. In this paper $\lambda$-$L(D, 2 ,1)$-$labeling$ of square grid is considered. The lower bound on the labeling number for square grid is presented and a formula for $\lambda$-$L(D, 2 ,1)$-$labeling$ of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number. |
---|
Ključne besede: | Graph labeling, Square grid, Labeling number, Frequency assignment problem (FAP) |
---|
Leto izida: | 2019 |
---|
Št. strani: | 485-487 |
---|
Številčenje: | 6, 42 |
---|
PID: | 20.500.12556/RUNG-8141 |
---|
COBISS.SI-ID: | 149328643 |
---|
DOI: | https://doi.org/10.1007/s40009-018-0780-5 |
---|
NUK URN: | URN:SI:UNG:REP:VMO9ZZMV |
---|
Datum objave v RUNG: | 17.04.2023 |
---|
Število ogledov: | 1507 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |