Naslov: | Mass composition of Telescope Array's surface detectors events using deep learning |
---|
Avtorji: | ID Kharuk, I. (Avtor) ID Lundquist, Jon Paul (Avtor), et al. |
Datoteke: | ICRC2021_384.pdf (788,87 KB) MD5: BA78663A7EA8CACD24AB401D8122F062
https://pos.sissa.it/395/384/
https://pos.sissa.it/395/384/pdf
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.08 - Objavljeni znanstveni prispevek na konferenci |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | We report on an improvement of deep learning techniques used for identifying primary particles of atmospheric air showers. The progress was achieved by using two neural networks. The first works as a classifier for individual events, while the second predicts fractions of elements in an ensemble of events based on the inference of the first network. For a fixed hadronic model, this approach yields an accuracy of 90% in identifying fractions of elements in an ensemble of events. |
---|
Ključne besede: | Telescope Array, indirect detection, ground array, surface detection, ultra-high energy, cosmic rays, composition, deep learning, machine learning, neural networks |
---|
Status publikacije: | Objavljeno |
---|
Leto izida: | 2022 |
---|
PID: | 20.500.12556/RUNG-8479 |
---|
COBISS.SI-ID: | 166306563 |
---|
DOI: | 10.22323/1.395.0384 |
---|
NUK URN: | URN:SI:UNG:REP:N24WRR9E |
---|
Datum objave v RUNG: | 29.09.2023 |
---|
Število ogledov: | 1678 |
---|
Število prenosov: | 5 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |