Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Strategies to overcome particle size limitations in covalent organic frameworks for bioimaging and delivery : lecture at the 9th International Conference on Metal-Organic Frameworks and Open Framework Compounds (MOF2024), Singapore, 15th-19th July 2024
Avtorji:ID Škorjanc, Tina (Avtor)
Datoteke:URL https://hub24.kit-react.de/s/MOF2024_eprog
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano
Tipologija:3.15 - Prispevek na konferenci brez natisa
Organizacija:UNG - Univerza v Novi Gorici
Opis:Particle size is an important physical parameter in any nanomaterial designed for biomedical applications. It critically influences the biological fate of nanoparticles. It is generally believed that a range between 10 and 200 nm is most relevant to physical and biochemical targeting through both intravascular and site-specific deliveries.1 High porosity, purely organic nature, structural tunability and the ability to gradually release therapeutically-relevant cargo have rendered covalent organic frameworks (COFs) promising materials in biomedical research. While several COF-based drug delivery systems have been reported, particle aggregation and the associated particle size pose a significant barrier to real-life implementation of these systems.2 In the current talk, two strategies to address these issues will be presented as they have been applied to biosensing and delivery applications. Firstly, prolonged ultrasonication has proven an effective method of reducing the COF particle size while maintaining the material’s chemical properties.3 A fluorescent COF, that was post-synthetically modified to incorporate a hypoxia-targeting nitroimidazole moiety, was exposed to prolonged ultrasonication which effectively reduced the particle size from several µm to <170 nm.4 The ultrasonication treatment did not significantly hamper the material’s physical or chemical properties, such as crystallinity, and it even enhanced its fluorescence signal by overcoming aggregation-caused quenching (ACQ). The material and its constituent building blocks were shown to have minimal or no cytotoxicity. The COF’s internalization was monitored by fluorescence spectroscopy, and it preferentially accumulated in cells exposed to hypoxic environment, thus serving as a fluorescent biosensor for hypoxia. Another strategy of limiting the COF particle size is to grow the material on nano-sized substrates. Silver nanowires (AgNWs) have been shown as effective intracellular sensors5 and single-cell endoscopic tools.6 We have prepared AgNWs with diameters below 200 nm and have employed various synthetic methods to coat them with thiol-functionalized COFs. Favorable coordination bonds that form between Ag and the thiol functional group in the COF linkers drive the assembly process. Both bottom-up synthetic approaches, where the COF is grown on the surface of AgNWs, and top-down strategies, where pre-synthesized COF particles are attached onto AgNWs surface have been successful. The inorganic-organic hybrid materials were characterized by various techniques, including electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and powder X-ray diffraction. All characterizations combined suggest that the diameter of the COF-coated AgNWs remains well in the nanometer-size regime. References: (1) Hickey, J. W.; Santos, J. L.; Williford, J.-M.; Mao, H.-Q. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Control. Release 2015, 219, 536–547. (2) Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A. P. Covalent Organic Frameworks for Biomedical Applications. Adv. Healthc. Mater. 2021, 10 (6), 2002090. (3) Skorjanc, T.; Heinrich, J.; Makuc, D.; Kulak, N.; Valant, M. Sustained Delivery of Cu(II)-Based DNA Intercalators by Nanometer-Sized Cyclodextrin-Based Porous Polymers. ACS Appl. Nano Mater. 2023, 6 (22), 21162–21168. (4) Skorjanc, T.; Shetty, D.; Kumar, S.; Makuc, D.; Mali, G.; Volavšek, J.; Bergant Marušič, M.; Valant, M. Nitroreductase-Sensitive Fluorescent Covalent Organic Framework for Tumor Hypoxia Imaging in Cells. Chem. Commun. 2023, 59 (38), 5753–5756. (5) Zhang, Q.; Inose, T.; Ricci, M.; Li, J.; Tian, Y.; Wen, H.; Toyouchi, S.; Fron, E.; Ngoc Dao, A. T.; Kasai, H.; Rocha, S.; Hirai, K.; Fortuni, B.; Uji-i, H. Gold-Photodeposited Silver Nanowire Endoscopy for Cytosolic and Nuclear PH Sensing. ACS Appl. Nano Mater. 2021, 4 (9), 9886–9894. (6) Ricci, M.; Fortuni, B.; Vitale, R.; Zhang, Q.; Fujita, Y.; Toyouchi, S.; Lu, G.; Rocha, S.; Inose, T.; Uji-I, H. Gold-Etched Silver Nanowire Endoscopy: Toward a Widely Accessible Platform for Surface-Enhanced Raman Scattering-Based Analysis in Living Cells. Anal. Chem. 2021, 93 (12), 5037–5045.
Ključne besede:covalent organic frameworks, imaging, delivery, nanoendoscopy, nanowire
Leto izida:2024
PID:20.500.12556/RUNG-9185 Novo okno
COBISS.SI-ID:202416643 Novo okno
UDK:54
NUK URN:URN:SI:UNG:REP:VS5EULJM
Datum objave v RUNG:22.07.2024
Število ogledov:817
Število prenosov:2
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del monografije

Naslov:MOF 2024 : 9th International Conference of Metal-Organic Frameworks and Open Framework Compounds
Kraj izida:Singapore
Leto izida:2024
Prireditelj konference:Materials Research Society Singapore

Nazaj