Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Search for a signal from dark matter sub-halos with the galactic plane survey of CTA Observatory : master's thesis
Avtorji:ID Rokavec, Zoja (Avtor)
ID Zaharijas, Gabrijela (Mentor) Več o mentorju... Novo okno
Datoteke:.pdf Zoja_Rokavec.pdf (5,39 MB)
MD5: F6BDAC82965737B3CFF83437143B1124
 
Jezik:Angleški jezik
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FN - Fakulteta za naravoslovje
Opis:Dark matter (DM), known to be a dominant matter component in the Universe, has been searched for extensively, yet remains undetected. One of the promising avenues of detecting a DM signal is to observe the so called ’DM sub-halos’ within our galaxy. These sub-halos, which are numerous within the Milky Way, are formed by the clustering of DM, as predicted by cosmological simulations, and most of them lack baryonic matter counterparts, making them challenging to detect. How- ever, the annihilation or decay of Weakly Interacting Massive Particles (WIMPs), a leading candidate for DM, within these sub-halos is expected to produce very high-energy (VHE) photons (called gamma-rays) at TeV energies, offering possible indirect DM detection. In this thesis, we focus on the Galactic Plane Survey (GPS) of the Cherenkov Tele- scope Array Observatory (CTAO), an upcoming ground-based gamma-ray obser- vatory, which promises unprecedented sensitivity and resolution in the detection of cosmic gamma-ray sources in the ∼ 30 GeV to ∼ 100 TeV energy range. As dark sub-halos are expected to appear as unidentified (point) sources in the CTAO GPS data, we employ a machine learning (ML)-based approach, the AutoSour- ceID framework, leveraging U-shaped networks (U-Nets) and Laplacian of Gaus- sian (LoG) filter, for automatic source detection and localization, and apply it to simulated GPS data. We establish detection thresholds for U-Nets trained on dif- ferently scaled counts (counts, square root or log of counts) and identify which approach offers best results (in terms of flux sensitivity and location accuracy). Our findings suggest that using log-scaled counts yields a factor of 1.7 lower flux threshold compared to counts alone. In addition, we compare our ML outcomes with traditional methods; however, this comparison is not straightforward, as ML and traditional approaches fundamentally differ in their methodologies and un- derlying assumptions. Nevertheless, The flux threshold obtained using log-scaled counts is comparable to that of the traditional likelihood-based detection method implemented in the Gammapy library, although further study is needed to estab- lish a more definitive comparison. These preliminary results also suggest that the flux threshold for detecting 90% of true sources with the ML approach is approx- imately two times lower than the sensitivity reported for the GPS in the CTAO publication. Although these results are not directly comparable due to differences in methodology, they hint that ML methods may offer superior performance in certain scenarios. Furthermore, we discuss the implications of our results on the sensitivity to DM sub-halos, improving it by a factor of 4, highlighting the possi- bility of detecting at least one sub-halo with a cross section approximately ⟨σv⟩ = 2.4 × 10−23 cm3 /s.
Ključne besede:Cherenkov Telescope Array Observatory, dark matter, sub-halos, machine learning, gamma-rays, master's thesis
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Kraj izida:Nova Gorica
Kraj izvedbe:Nova Gorica
Založnik:Z. Rokavec
Leto izida:2024
Leto izvedbe:2024
Št. strani:VIII, 53 str.
PID:20.500.12556/RUNG-9284-7f6db7e1-6a81-448b-78a5-13ae5461c198 Novo okno
COBISS.SI-ID:206663683 Novo okno
UDK:52
NUK URN:URN:SI:UNG:REP:EEC5AEES
Datum objave v RUNG:06.09.2024
Število ogledov:574
Število prenosov:12
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:03.09.2024

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Magistrsko delo


Nazaj