Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. The simple search mode searches by title, abstract, key words and full text. The advanced search mode offers several attributes and search operators to search with. This search method also allows the use of Boolean operators.

Help
Search in:
Options:
 


161 - 170 / 200
First pagePrevious page11121314151617181920Next pageLast page
161.
162.
Politics of sexuality in Slovenian crime fiction from »moderna« and Ljuba Prenner to the 21st Century
Primož Mlačnik, 2024, published scientific conference contribution abstract

Abstract: The first part of the lecture will weave together two short theoretical introductions regarding the relationship between sexuality and crime fiction, focusing on the poetics of the genre(s) and, second, the Western politics of sexuality. In the second part, the lecture will present the historically contextualised subject of sexuality or rather intimacy in Slovenian literature in the period of »moderna« and two short analyses of one of the first Slovenian crime stories, Požigalec (1910; The Arsonist) and the first Slovenian crime novel Neznani storilec: malomeščanska kriminalna povest (1939; Unknown Perpetrator: a provincial crime tale). In the context of politics of sexuality, the lecture will lay bare a few distinctive socio-historical representational patterns – ideological themes found in stories of (women) writers from »moderna« and contemporary Slovenian crime fiction – that persist well into the 21st Century.
Keywords: poetics of crime fiction, politics of sexuality, Slovenian crime fiction
Published in RUNG: 10.09.2024; Views: 504; Downloads: 0
This document has many files! More...

163.
Quantitative detection of Microcystis aeruginosa (cyanobacteria) in water using single domain antibodies (VHH) : dissertation
Gbenga Folorunsho Oginni, 2024, doctoral dissertation

Abstract: Microcystis aeruginosa accumulation in freshwater poses a significant threat to aquatic organisms and human health. The toxicity of Cyanobacteria metabolites urges for the development of methods for their rapid and efficient detection but what is still almost completely missing is the availability of reagents for the quantification of M. aeruginosa cells in water to monitor the fluctuations of its population. In this study, nanobodies against cell surface antigens of the toxic Cyanobacteria M. aeruginosa were recovered bywhole-cell panning of a naive phage display library. Six unique sequences were identified and three of them sub-cloned and purified as fusion immunoreagents together with either green fluorescent protein or Avi-Tag to be used for diagnostics. Theirspecificity and sensitivity were evaluated by immunofluorescence, by fluorescent and colorimetric cell ELISA and by thermal lens spectrometry (TLS). No cross-reactivity with unrelated microalgae was detected, and both ELISA and TLS methods provided a linear range of detection of several logs. The limit-of-detection of TLS was as low as 1 cell/ml.
Keywords: cyanobacteria, nanobodies, phage display, thermal lens spectrometry, dissertations
Published in RUNG: 10.09.2024; Views: 514; Downloads: 11
.pdf Full text (3,80 MB)

164.
Green synthesis of Zeolitic Imidazolate Frameworks and their evaluation for ▫$CO_2$▫ capture in humid conditions : dissertation
Aljaž Škrjanc, 2024, doctoral dissertation

Abstract: Emissions of green-house gasses have been in the forefront of scientific research in recent decades. One of the approaches towards reducing the amount of green gas CO2 in the atmosphere is its capture and storage with subsequent conversion where pure enough CO2 can be regenerated. While CO2 capture widely utilizes two mature technologies, amine absorption and cryogenic distillation, they both have significant downsides, in either cost or potential new danger to the environment. To that end an adsorption-based CO2 capture has seen quite a lot of interest in recently. Nanoporous materials have been extensively studied for this application, starting with zeolites, followed by aluminophosphates and also the new members of the porous materials group, the so called reticular porous materials. Metal-Organic Frameworks (MOFs), the first discovered reticular porous materials have shown very promising results for post combustion CO2 capture and recently also for in-door and direct air capture. MOFs are in general enough thermally stable for CO2 capture, their main weakness for wide applicability is sometimes lower selectivity for CO2 in real gas mixtures and lower stability in humid conditions. Zeolitic imidazolate frameworks (ZIFs), a subgroup of MOFs, have in recent years been extensively studied for sorption applications, also CO2, due to their superior stability and kinetics for vapour/gas adsorption if compared to carboxylate-based MOFs. While extensively studied, an overview of articles shows that most research is limited to a limited set group of frameworks, with ZIF-8 being used in more than half of ZIF papers. While ZIF-8 has successfully been prepared in water and even in solvent-free conditions, the rest of the ZIFs synthesis still heavily rely on solvothermal synthesis with formamide based solvent systems and synthesis times upwards of 5 days. Even in the case of ZIF-8, while greener synthesis approaches are available, dimethylformamide (DMF) synthesis still prevails in the cases tested for CO2 capture, mainly due to the increased CO2 uptake resulting from the synergistic contribution of the remaining DMF solvent in the pores. The goal of this thesis was to develop green synthesis approaches, both solvothermal and mechanochemical, for known ZIFs and then to extend the scope towards preparation of new ZIF materials. The goal for latter was to experimentally determine the optimal topology and functionality of ZIFs for CO2 adsorption in humid conditions. Model humid gas isotherms were developed and measured for a series of ZIFs with mostly SOD (sodalite) and RHO framework topologies and Zn and Ni as metal nodes. Finally, some novel bio-based binder materials were tested for the use with ZIFs. The sorption tests revealed than the SOD topology ZIFs have high potential for CO2 sorption applications, as the adsorption is rapid and further combination of terminally functionalised imidazoles in those frameworks drastically increases the frameworks affinity for CO2 at lower pressures. With most common 4,5- functionalised imidazole having hydrophilic functional groups, the challenge of competitive water sorption still remains. On the other hand some hydrophobic 4,5-substituted sodalite ZIFs, both with 4,5-dichloroimidazole, show excellent CO2 sorption and even complete hydrophobicity. The results led us to hypothesize that further research on ZIFs- for CO2 capture has to shift form 2 substituted sodalite frameworks to 4,5 substituted frameworks with strongly dipolar hydrophobic groups. The hydrophilic polar groups currently in use lead to issues with competitive water adsorption, due to their potential to form hydrogen bonds with water. Furthermore, some new agar and alginate based shaping methods were tested, as both potential binders are not environmentally toxic and are already used on the industrial scale world-wide for other applications.
Keywords: carbon capture, synthesis, metal-organic frameworks, zeolitic imidazolate frameworks, nanoporous materials, dissertations
Published in RUNG: 10.09.2024; Views: 635; Downloads: 19
.pdf Full text (15,56 MB)

165.
Disinfection of wastewater using porous Fe2O3 thin film : master's thesis
Ranin M. D. Ismail, 2024, master's thesis

Abstract: The contamination of water bodies by microorganisms is seen as a highly significant issue that poses a threat to human and animal well-being. The primary objective of this master thesis is to develop and evaluate an environmentally friendly photoelectrochemical (PEC) method using porous Fe₂O₃ thin films for the disinfection of wastewater. This thesis presents the novel application of porous Fe₂O₃ thin films, which were produced using a cost-effective spin-coating technique, to improve the process of PEC disinfection. The PEC approach has been demonstrated to be highly effective in disinfection of wastewaters deliberately contaminated with E. coli bacteria. The crystallinity of the Fe₂O₃ porous thin films was confirmed using X-ray diffraction (XRD), while the film morphology was studied using scanning electron microscopy (SEM). The PEC disinfection procedures were conducted in the presence of two separate electrolytes, sodium sulfite (Na₂SO₃) and sodium chloride (NaCl), which were chosen for their specific roles in improving the effectiveness of disinfection. The PEC method shown efficacy in inactivating E. coli, with 45% of the bacteria being inactivated in the presence of 2 mM Na₂SO₃ and complete inactivation achieved with 20 mM NaCl. The findings suggest that the PEC disinfection process is a highly efficient and eco-friendly technology that can be used as a practical substitute for traditional disinfection methods. As a result, it has potential applications in ensuring public safety and safeguarding the environment, particularly in relation to wastewater treatment.
Keywords: Treated wastewater, Disinfection, Escherichia coli, Photoelectrochemical oxidation, Fe2O3 thin films, Sodium sulfite and Sodium chloride.
Published in RUNG: 09.09.2024; Views: 642; Downloads: 11
.pdf Full text (2,23 MB)

166.
167.
Otroški besedili Sapramiška in Žogica Nogica z vidika emocionalne literarne vede
Ivana Zajc, 2024, published scientific conference contribution abstract

Keywords: otroška književnosti, Sapramiška, Žogica Nogica, čustva, emocionalna literarna veda
Published in RUNG: 09.09.2024; Views: 416; Downloads: 9
.pdf Full text (869,44 KB)
This document has many files! More...

168.
Dust, convection, winds and waves : the 2022 NASA CPEX-CV campaign
Edward P. Nowottnick, Angela K. Rowe, Amin R. Nehrir, Jonathan A. Zawislak, Aaron J. Piña, Will McCarty, Rory A. Barton-Grimley, Kristopher M. Bedka, J. Ryan Bennett, Griša Močnik, 2024, original scientific article

Abstract: The NASA Convective Processes Experiment - Cabo Verde (CPEX-CV) field campaign took place in September 2022 out of Sal Island, Cabo Verde. A unique payload aboard the NASA DC-8 aircraft equipped with advanced remote sensing and in situ instrumentation, in conjunction with radiosonde launches and satellite observations, allowed CPEX-CV to target the coupling between atmospheric dynamics, marine boundary layer properties, convection, and the dust-laden Saharan Air Layer in the data-sparse tropical East Atlantic region. CPEX-CV provided measurements of African Easterly Wave environments, diurnal cycle impacts on convective lifecycle, and several Saharan dust outbreaks, including the highest dust optical depth observed by the DC-8 interacting with what would become Tropical Storm Hermine. Preliminary results from CPEX-CV underscore the positive impact of dedicated tropical East Atlantic observations on downstream forecast skill, including sampling environmental forcings impacting the development of several non-developing and developing convective systems such as Hurricanes Fiona and Ian. Combined airborne radar, lidar, and radiometer measurements uniquely provide near-storm environments associated with convection on various spatiotemporal scales and, with in situ observations, insights into controls on Saharan dust properties with transport. The DC-8 also collaborated with the European Space Agency to perform coordinated validation flights under the Aeolus spaceborne wind lidar and over the Mindelo ground site, highlighting the enhanced sampling potential through partnership opportunities. CPEX-CV engaged in professional development through dedicated team building exercises that equipped the team with a cohesive approach for targeting CPEX-CV science objectives and promoted active participation of scientists across all career stages.
Keywords: convective processesž, Saharan dust, aerosol, airborne measurements
Published in RUNG: 09.09.2024; Views: 435; Downloads: 5
.pdf Full text (6,60 MB)
This document has many files! More...

169.
Match my epistolary freak : sexual desire in the electronic collection Pisma/Letters
Darko Ilin, 2024, published scientific conference contribution abstract

Abstract: The lecture will focus on the exploration of sexuality as reflected in the letters of Slovene women writers at the turn of the century. This event will delve into the rich correspondences found in the PISMA/LETTERS electronic collection, a project that has brought to light the intimate and personal writings of these authors. The lecture will begin with an introduction to the project, providing an overview of the electronic collection's origins and the subsequent publication that emerged from it. We will then explore the unique characteristics of the letter as a medium, discussing its materiality and drawing parallels with contemporary modes of communication. The central focus of the lecture will be an in-depth analysis of the erotic elements within these letters. By examining how sexual desire is narrated across different contexts, we will uncover the subtle ways in which these women expressed their desires and navigated the societal constraints of their time. This exploration promises to offer a fascinating glimpse into the personal lives and inner worlds of Slovene women writers, revealing the complexity and richness of their experiences
Keywords: sexual desire, letters, Pisma
Published in RUNG: 09.09.2024; Views: 432; Downloads: 2
URL Link to file
This document has many files! More...

170.
First utilization of magnetically-assisted photocatalytic iron ▫$oxide-TiO_2$▫ nanocomposites for the degradation of the problematic antibiotic ciprofloxacin in an aqueous environment
Josip Radić, Gregor Žerjav, Lucija Jurko, Perica Bošković, Lidija Fras Zemljič, Alenka Vesel, Andraž Mavrič, Martina Gudelj, Olivija Plohl, 2024, original scientific article

Abstract: The emergence of antimicrobial resistance due to antibiotics in the environment presents significant public health, economic, and societal risks. This study addresses the need for effective strategies to reduce antibiotic residues, focusing on ciprofloxacin degradation. Magnetic iron oxide nanoparticles (IO NPs), approximately 13 nm in size, were synthesized and functionalized with branched polyethyleneimine (bPEI) to obtain a positive charge. These IO-bPEI NPs were combined with negatively charged titanium dioxide NPs (TiO2@CA) to form magnetically photocatalytic IO-TiO2 nanocomposites. Characterization techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), electrokinetic measurements, and a vibrating sample magnetometer (VSM), confirmed the successful formation and properties of the nanocomposites. The nanocomposites exhibited a high specific surface area, reduced mobility of photogenerated charge carriers, and enhanced photocatalytic properties. Testing the photocatalytic potential of IO-TiO2 with ciprofloxacin in water under UV-B light achieved up to 70% degradation in 150 min, with a degradation rate of 0.0063 min−1. The nanocomposite was magnetically removed after photocatalysis and successfully regenerated for reuse. These findings highlight the potential of IO-TiO2 nanocomposites for reducing ciprofloxacin levels in wastewater, helping curb antibiotic resistance.
Keywords: photocatalytic degradation, magnetic iron oxide-TiO2 nanocomposites, hetero-agglomeration, multifunctionality, antibiotic ciprofloxacin, antimicrobial resistance
Published in RUNG: 09.09.2024; Views: 464; Downloads: 6
.pdf Full text (14,48 MB)
This document has many files! More...

Search done in 0.06 sec.
Back to top