Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment
D. Paraskevopoulou, Aikaterini Bougiatioti, Iasonas Stavroulas, T. Fang, Maria Lianou, Eleni Liakakou, Evangelos Gerasopoulos, R. Weber, Athanasios Nenes, Nikolaos Mihalopoulos, 2019, izvirni znanstveni članek

Opis: The oxidative potential (OP) of fine and coarse fractions of ambient aerosols was studied in the urban environment of Athens, Greece. OP was quantified using a dithiothreitol (DTT) assay, applied to the water soluble fraction of aerosol that was extracted from 361 fine and 84 coarse mode of 24-h and 12-h filter samples over a one-year period. During the cold period, samples were collected on a 12-h basis, to assess the impact of night-time biomass burning emissions from domestic heating on OP. The chemical characteristics of aerosols were measured in parallel using an Aerosol Chemical Speciation Monitoring (ACSM) and a 7-wavelength Aethalometer. A source apportionment analysis on the ACSM data resulted in the identification of organic aerosol (OA) factors on a seasonal basis. A good correlation of OP with NO3−, NH4+, BC (Black Carbon), Organics and LV-OOA (low volatility oxygenated OA) was found during winter, revealing the importance of combustion and aging processes for OP. During the summertime, a good correlation between OP and SO4−2 and NH4+indicates its association with regional aerosol – thus the importance of oxidative aging that reduces its association with any characteristic source. Multiple regression analysis during winter revealed that highly oxygenated secondary aerosol (LV-OOA) and, to a lesser extent, fresh biomass burning (BBOA) and fossil fuel (HOA) organic aerosol, are the prime contributors to the OP of fine aerosol, with extrinsic toxicities of 54 ± 22 pmol min−1 μg−1, 28 ± 7 and 17 ± 4 pmol min−1μg−1, respectively. In summer, OP cannot be attributed to any of the identified components and corresponds to a background aerosol value. In winter however, the regression model can reproduce satisfactorily the water soluble DTT activity of fine aerosol, providing a unique equation for the estimation of aerosol OP in an urban Mediterranean environment.
Ključne besede: oxidative potential, reactive oxygen species, DTT assay, particulate matter, urban aerosol
Objavljeno v RUNG: 13.05.2024; Ogledov: 135; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens) : a high temporal-resolution chemical composition measurement study
Iasonas Stavroulas, Aikaterini Bougiatioti, Georgios Grivas, D. Paraskevopoulou, M. Tsagkaraki, Pavlos Zarmpas, Eleni Liakakou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2019, izvirni znanstveni članek

Opis: Submicron aerosol chemical composition was studied during a year-long period (26 July 2016–31 July 2017) and two wintertime intensive campaigns (18 December 2013–21 February 2014 and 23 December 2015–17 February 2016), at a central site in Athens, Greece, using an Aerosol Chemical Speciation Monitor (ACSM). Concurrent measurements included a particle-into-liquid sampler (PILS-IC), a scanning mobility particle sizer (SMPS), an AE-33 Aethalometer, and ion chromatography analysis on 24 or 12 h filter samples. The aim of the study was to characterize the seasonal variability of the main submicron aerosol constituents and decipher the sources of organic aerosol (OA). Organics were found to contribute almost half of the submicron mass, with 30 min resolution concentrations during wintertime reaching up to 200 µg m−3. During winter (all three campaigns combined), primary sources contributed about 33 % of the organic fraction, and comprised biomass burning (10 %), fossil fuel combustion (13 %), and cooking (10 %), while the remaining 67 % was attributed to secondary aerosol. The semi-volatile component of the oxidized organic aerosol (SV-OOA; 22 %) was found to be clearly linked to combustion sources, in particular biomass burning; part of the very oxidized, low-volatility component (LV-OOA; 44 %) could also be attributed to the oxidation of emissions from these primary combustion sources. These results, based on the combined contribution of biomass burning organic aerosol (BBOA) and SV-OOA, indicate the importance of increased biomass burning in the urban environment of Athens as a result of the economic recession. During summer, when concentrations of fine aerosols are considerably lower, more than 80 % of the organic fraction is attributed to secondary aerosol (SV-OOA 31 % and LV-OOA 53 %). In contrast to winter, SV-OOA appears to result from a well-mixed type of aerosol that is linked to fast photochemical processes and the oxidation of primary traffic and biogenic emissions. Finally, LV-OOA presents a more regional character in summer, owing to the oxidation of OA over the period of a few days.
Ključne besede: ACSM, organic aerosol, PMF, source apportionment
Objavljeno v RUNG: 13.05.2024; Ogledov: 140; Prenosov: 2
.pdf Celotno besedilo (4,65 MB)
Gradivo ima več datotek! Več...

3.
Optical properties of near-surface urban aerosols and their chemical tracing in a Mediterranean city (Athens)
Dimitris Katsanos, Aikaterini Bougiatioti, Eleni Liakakou, Dimitris G. Kaskaoutis, Iasonas Stavroulas, D. Paraskevopoulou, Maria Lianou, Basil E. Psiloglou, Evangelos Gerasopoulos, Christodoulos Pilinis, 2019, izvirni znanstveni članek

Opis: One-year measurements (October 2016–September 2017) of aerosol optical properties in the Athens urban environment were analyzed; for closure purposes, the results were supported by data of chemical composition of the non-refractory submicron aerosol fraction acquired with an Aerosol Chemical Speciation Monitor (ACSM). Both the spectral scattering (bsca) and absorption (babs) coefficients exhibit a pronounced annual variability with higher values (63.6 Mm–1 at 550 nm and 41.0 Mm–1 at 520 nm, respectively) in winter, due to domestic heating releasing increased carbonaceous emissions and the shallow mixing layer trapping aerosols near the surface. Much lower values (33.5 Mm–1 and 22.9 Mm–1 for bsca and babs, respectively) are found during summer, indicating rather aged aerosols from regional sources. The estimations of the dry spectral single scattering albedo (SSA), scattering (SAE) and absorption (AAE) Ångström exponents focus on the seasonality of the urban aerosols. The high SAE (~2.0) and low SSA (0.62 ± 0.11) values throughout the year indicate the dominance of fine-absorbing aerosols from fossil-fuel combustion, while the high AAE (~1.5) in winter suggests enhanced presence of biomass-burning aerosols. Pronounced morning and late evening/night peaks are found in both bsca and babs during winter, coinciding with the morning traffic rush hour and increased residential wood burning in the evening, while in the other seasons, the diurnal patterns flatten out. The wind speed strongly affects the aerosol loading and properties in winter, since for winds below 3 m s–1, a high increase in bsca and babs is observed, consistent with low dilution processes and hazy/smoggy conditions. Our closure experiments indicate a good agreement (R2 = 0.91, slope = 1.08) between the reconstructed and measured bsca values and reveal that organic matter contributes about half of the sub-micron mass in winter, followed by sulfate (~40%) and nitrate (10%, only in winter) aerosols.
Ključne besede: urban aerosols, light scattering, absorption, chemical species, wood burning, Athens
Objavljeno v RUNG: 10.05.2024; Ogledov: 147; Prenosov: 2
.pdf Celotno besedilo (1,36 MB)
Gradivo ima več datotek! Več...

4.
Measuring the spatial variability of black carbon in Athens during wintertime
Georgios Grivas, Iasonas Stavroulas, Eleni Liakakou, Dimitris G. Kaskaoutis, Aikaterini Bougiatioti, D. Paraskevopoulou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2019, izvirni znanstveni članek

Opis: A first assessment of the spatial variability of ambient black carbon (BC) concentrations in the Greater Area of Athens (GAA) was carried out during an intensive wintertime campaign, when ambient levels are exacerbated by increased biomass burning for residential heating. Short-term daytime BC measurements were conducted at 50 sites (traffic and urban/suburban/regional background) and on-road along 12 routes. Daytime measurements were adjusted based on BC concentrations continuously monitored at a reference site. Indicative nighttime BC ambient concentrations were also measured at several residences across the area. Daytime BC concentrations recorded an average of 2.3 μg m-3 with considerable between-site variability. Concentrations at traffic sites were significantly higher (43% on average), compared with the rest of the sites. Varying levels were observed between background site subtypes, with concentrations at urban background sites (located near the center of Athens and the port of Piraeus) being 34% and 114% higher, on average, than at suburban and regional background sites, respectively. The traffic intensity at the nearest road and the population and built density in the surrounding area of sites were recognized as important factors controlling BC levels. On-road concentration measurements (5.4 μg m-3 on average) enabled the identification of hot-spots in the road network, with peak levels encountered along motorways (13.5 μg m-3 on average). Nighttime measurements demonstrated that wintertime BC pollution, enhanced by residential biomass burning for heating, affects the entire Athens basin. The reference site in central Athens was found to be representative of the temporal variability for daytime and nighttime BC concentrations at background locations.
Ključne besede: mobile measurements, microaethalometer, Athens, mapping, traffic, biomass burning
Objavljeno v RUNG: 10.05.2024; Ogledov: 159; Prenosov: 3
URL Povezava na datoteko
Gradivo ima več datotek! Več...

5.
Yearlong measurements of monoterpenes and isoprene in a Mediterranean city (Athens) : natural vs anthropogenic origin
Anastasia Panopoulou, Eleni Liakakou, Stéphane Sauvage, Valérie Gros, Nadine Locoge, Iasonas Stavroulas, Bernard Bonsang, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, izvirni znanstveni članek

Opis: Monoterpenes and isoprene are important constituents of the volatile organic compounds (VOCs) due to their high reactivity and participation in ozone and secondary aerosol formation. The current work focuses on the results of a 13-month intensive campaign of high resolution time-resolved measurements of these compounds, at an urban background site in Athens, Greece. On an annual basis, monoterpenes (α-pinene and limonene) surpass the isoprene levels presenting mean values of 0.70 ± 0.83 μg m−3, 0.33 ± 0.78 μg m−3 and 0.19 ± 0.36 μg m−3, respectively. The large standard deviation highlights the significant diurnal and day-to-day variability. Isoprene presents a typical seasonal cycle, with a photochemically induced summer-time maximum. Enhanced noon levels are observed during summer, whereas a morning peak in the autumn and winter profiles occurs, despite the generally low levels encountered during these seasons. The monoterpenes deviate from the expected biogenic pattern, presenting higher mean levels during the cold period and a night-to-early morning enhancement strongly related to local anthropogenic tracers such as BC, CO, NO or toluene, as well as increased levels under wind speeds lower than 3 m s−1. Estimations of the anthropogenic and biogenic fractions based on the enhancement ratios of α-pinene versus a variety of anthropogenic tracers, demonstrate a clear dominance of the anthropogenic sources in all studied seasons. Simultaneously, the biogenic fraction increased during summer relative to winter by more than 10 times. Both α-pinene and limonene significantly contribute to locally formed secondary organic aerosol (SOA), determined by means of an ACSM, accounting for at least 22% and 13% of their levels in summer and winter respectively. Additionally, monoterpenes and isoprene contribute 6% to the observed oxidants levels (O3 + NOx) during summer.
Ključne besede: volatile organic compounds, biogenic compounds, monoterpenes, isoprene, Athens
Objavljeno v RUNG: 10.05.2024; Ogledov: 140; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

6.
On the regional aspects of new particle formation in the Eastern Mediterranean : a comparative study between a background and an urban site based on long term observations
Panayiotis Kalkavouras, Aikaterini Bougiatioti, Georgios Grivas, Iasonas Stavroulas, Nikos Kalivitis, Eleni Liakakou, Evangelos Gerasopoulos, Christodoulos Pilinis, Nikolaos Mihalopoulos, 2020, izvirni znanstveni članek

Opis: Atmospheric new particle formation (NPF) is an important source of submicron particles. In remote background environments where local sources are scarce such processes may impact significantly on climate-relevant parameters. On the other hand, in urban environments, newly-formed particles are adding up to submicron particles emitted from primary sources. As the exact mechanism which triggers NPF still remains elusive, so are the circumstances for simultaneous occurrence of such events in two different environments (urban vs. regional background). In this study, concurrent number size distribution measurements were conducted in the urban environment of Athens and at the regional background site of Finokalia, Crete, located 340 km away and spanning a 2-year period. It occurred that the relative frequency of NPF was similar at both sites (around 20%), with a higher frequency during spring and autumn at the urban site, while at the background site most events took place in August and December, during the studied period. There were 35 event days when NPF took place at both sites simultaneously, all associated with air masses originating from the Northern sector, indicating the presence of regional events in the extended geographical area and characterized by low condensation sink (CS). By comparing the common with the non-common class I NPF episodes, we conclude that the conditions applying when regional NPF events with growth are observed in the same day at the surface level of both areas, are: (i) lower CS, (ii) higher SO2 concentrations, (iii) lower RH, and finally (iv) lower formation and growth rates than those observed during the site-specific and more rapidly evolving NPF events.
Ključne besede: NPF, Athens, Eastern Mediterranean, particle number concentrations, size distributions, concurrent regional events
Objavljeno v RUNG: 10.05.2024; Ogledov: 141; Prenosov: 0
Gradivo ima več datotek! Več...

7.
Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)
Eleni Liakakou, Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, M. Tsagkaraki, D. Paraskevopoulou, Aikaterini Bougiatioti, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, izvirni znanstveni članek

Opis: This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015–April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer.
Ključne besede: spectral aerosol absorption, brown carbon, wood burning, organic aerosols, chemical composition, Athens
Objavljeno v RUNG: 10.05.2024; Ogledov: 154; Prenosov: 1
URL Povezava na datoteko

8.
Field evaluation of low-cost PM sensors (Purple Air PA-II) under variable urban air quality conditions, in Greece
Iasonas Stavroulas, Georgios Grivas, Panagiotis Michalopoulos, Eleni Liakakou, Aikaterini Bougiatioti, Panayiotis Kalkavouras, Kyriaki Maria Fameli, Nikolaos Hatzianastassiou, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, 2020, izvirni znanstveni članek

Opis: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
Ključne besede: particulate matter, PM2.5, air quality, low-cost sensors, optical particle counter
Objavljeno v RUNG: 10.05.2024; Ogledov: 134; Prenosov: 3
URL Povezava na datoteko
Gradivo ima več datotek! Več...

9.
Online chemical characterization and sources of submicron aerosol in the major mediterranean port city of Piraeus, Greece
Iasonas Stavroulas, Georgios Grivas, Eleni Liakakou, Panayiotis Kalkavouras, Aikaterini Bougiatioti, Dimitris G. Kaskaoutis, Maria Lianou, Kyriaki Papoutsidaki, M. Tsagkaraki, Evangelos Gerasopoulos, Pavlos Zarmpas, Nikolaos Mihalopoulos, 2021, izvirni znanstveni članek

Opis: Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources.
Ključne besede: Athens, harbor, shipping emissions, PM1, chemical speciation, organic aerosol, black carbon, ACSM, aethalometer, PMF
Objavljeno v RUNG: 10.05.2024; Ogledov: 130; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

10.
In situ identification of aerosol types in Athens, Greece, based on long-term optical and on online chemical characterization
Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, Eleni Liakakou, Umesh Chandra Dumka, Konstantinos Dimitriou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, izvirni znanstveni članek

Opis: Absorption Ångström Exponent (AAE) and Scattering Ångström Exponent (SAE) values, derived from aethalometer and nephelometer measurements during a period of 3 years at an urban background site in Athens, are combined for the first aerosol type classification using in situ measurements in the eastern Mediterranean. In addition, single scattering albedo (SSA) and its wavelength dependence (dSSA), as well as the chemical composition of fine aerosols and precursor gases from collocated measurements, are utilized to provide further insights on the optical-chemical characterization and related sources of seven identified aerosol types. Urban aerosols are mostly characterized as Black Carbon (BC)-dominated (76.3%), representing a background atmosphere where fossil-fuel combustion is dominant throughout the year, while 14.3% of the cases correspond to the mixed Brown Carbon (BrC)-BC type, with a higher frequency in winter. The BrC type is associated with the highest scattering and absorption coefficients during winter nights, representing the impact from residential wood-burning emissions. Dust mixed with urban pollution (1.2%) and large particles mixed with BC (5.3%) have a higher frequency in spring. Furthermore, aging processes and BC coating with organic and inorganic species with weak spectral absorption (AAE<1) account for 2.2%, with a differentiation between small and large particles. dSSA is recognized as a useful parameter for aerosol characterization, since fine aerosols are associated with negative dSSA values. The identified aerosol types are examined on a seasonal, monthly, hourly basis and by potential source areas, as well as in comparison with fine-aerosol chemical composition and apportioned organic aerosol source contributions, in an attempt to explore the linkage between optical, physical and chemical aerosol properties. Chemical analysis indicates high organic fraction (60–68%) for the BrC and BrC/BC, 20–30% larger compared to other types. The results are essential for parametrization in chemical transport models and for reducing the uncertainty in the assessment of aerosol radiative effects.
Ključne besede: aerosol types, classification, AAE, SAE, dSSA, chemical composition, sources, Athens
Objavljeno v RUNG: 10.05.2024; Ogledov: 130; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh