Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
A novel multi-functional thiophene-based organic cation as passivation, crystalline orientation, and organic spacer agent for low-dimensional 3D/1D perovskite solar cells
Ali Semerci, Ali Buyruk, Saim Emin, Rik Hooijer, Daniela Kovacheva, Peter Mayer, Manuel A. Reus, Dominic Blätte, Marcella Günther, Nicolai F. Hartmann, 2023, original scientific article

Abstract: Recently, the mixed-dimensional (3D/2D or 3D/1D) perovskite solar cellsusing small organic spacers have attracted interest due to their outstandinglong-term stability. Here, a new type of thiophene-based organic cation2-(thiophene-2yl-)pyridine-1-ium iodide (ThPyI), which is used to fabricatemixed-dimensional 3D/1D perovskite solar cells, is presented. TheThPyI-based 1D perovskitoid is applied as a passivator on top of a 3D methylammonium lead iodide (MAPI) to fabricate surface-passivated 3D/1Dperovskite films or added alone into the 3D perovskite precursor to generatebulk-passivated 3D MAPI. The 1D perovskitoid acts as a passivating agent atthe grain boundaries of surface-passivated 3D/1D, which improves the powerconversion efficiency (PCE) of the solar cells. Grazing incidence wide-angleX-ray scattering (GIWAXS) studies confirm that ThPyI triggers the preferentialorientation of the bulk MAPI slabs, which is essential to enhance chargetransport. Champion bulk-passivated 3D and surface-passivated 3D/1Ddevices yield 14.10% and 19.60% PCE, respectively. The bulk-passivated 3Doffers favorable stability, with 84% PCE retained after 2000 h withoutencapsulation. This study brings a new perspective to the design of organicspacers having a different binding motif and a passivation strategy to mitigatethe impact of defects in hybrid 3D/1D perovskite solar cells.A. Semerci, A. Buyruk, R. Hooijer, P. Mayer, D. Blätte, M. Günther, T. Bein,T. AmeriDepartment of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13 (E), 81377 Munich, GermanyE-mail:tayebeh.ameri@ed.ac.ukS.EminMaterialsResearchLaboratoryUniversityofNovaGoricaVipavska13c,Ajdovšˇcina5270,SloveniaThe ORCID identification number(s) for the author(s) of this articlecan be found under https://doi.org/10.1002/adom.202300267© 2023 The Authors. Advanced Optical Materials published byWiley-VCH GmbH. This is an open access article under the terms of theCreative Commons Attribution-NonCommercial License, which permitsuse, distribution and reproduction in any medium, provided the originalwork is properly cited and is not used for commercial purposes.DOI: 10.1002/adom.2023002671. IntroductionDuring the last decade, 3D organic–inorganic halide perovskites (OIHPs) haveemerged as promising absorber materialsfor photovoltaic applications due to theirsuperior properties such as high absorp-tion coefficient, long diffusion length ofthe charge carriers, fast charge transport,and tunable bandgap. The 3D OIHPs havedemonstrated rapid increase in powerconversion efficiency (PCE) from 3.8% to25.2%.[1–9]On the other hand, their mod-erate intrinsic stability against moistureand heat still has been a concern with aview on possible commercialization.[10–14]Instability of the 3D methyl ammoniumlead iodide (MAPI) perovskite is assumedto be due to its crystalline structure. Ionicmigration is now well recognized to affectthe photovoltaic properties of perovskitesolar cells. Especially, the ionic migrationcauses the generation and displacement ofvacancies in perovskite materials. OIHPsare mixed ionic–electronic conductors withiodide ions as the majority of ionic carriers.D. KovachevaInstitute of General and Inorganic ChemistryBulgarian Academy of SciencesSofia 1113, BulgariaM. A. Reus, P. Müller-BuschbaumTUM School of Natural SciencesDepartment of PhysicsChair for Functional MaterialsTechnical University of MunichJames-Franck-Str. 1, 85748 Garching, GermanyN. F. HartmannAttocube systems AGNanoscale AnalyticsneaspecEglfinger Weg 2, 85540 Haar, GermanyS. Lotfi, J. P. HofmannSurface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto-Berndt-Str. 3, 64287 Darmstadt, GermanyAdv. Optical Mater.2023,11, 23002672300267 (1 of 13)© 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
Keywords: perovskites, solar cells, passivation
Published in RUNG: 04.12.2023; Views: 382; Downloads: 2
.pdf Full text (3,81 MB)
This document has many files! More...

2.
3.
4.
Tungsten carbide thin films for electrochemical water splitting studies
Saim Emin, Cesur Altinkaya, Ali Semerci, Matjaž Valant, Hasan Okuyucu, Abdullah Yildiz, 2017, published scientific conference contribution abstract

Abstract: We used wet-chemistry techniques to prepare colloidal tungsten (W) nanoparticles (NPs). The synthesis of W NPs was conducted using the so called hot-matrix method in 1-octadecene [1]. The sizes of obtained W NPs are in the order of 2 - 5 nm. These W NPs are coated with hydrophobic molecules which allow their dispersion in organic solvents like choloroform (CHCl3). It was found that the colloidal stability of the dispersions is exceptionally high exceeding several years. The stability of W NPs which prevents coagulation allows the preparation of thin films with uniform thicknesses by spin-coating, inkjet-printing and spray coating. We have prepared tungsten carbide (W2C, WC) thin films. The preparation of W2C and WC was achieved by spin-coating of pre-synthesized W NPs on graphite substrate and following heat treatment under Ar atmosphere at 1000 and 1450°C. The obtained W2C and WC films were used both in electrochemical water splitting studies. We also made a composite W2C-Pt films where we used only 5 at.% of Pt. The W2C-Pt composite has shown similar performance as pure Pt-C for hydrogen (H2) evolution. In conclusion, we have developed a procedure for the synthesis of W NPs which can be applied for the preparation of tungsten carbides films and their use for electrochemical water splitting.
Keywords: water splitting, nanoparticles, hot-matrix
Published in RUNG: 09.10.2017; Views: 5894; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top