Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


41 - 50 / 55
First pagePrevious page123456Next pageLast page
41.
MINOT: Modeling the intracluster medium (non-)thermal content and observable prediction tools
Rémi Adam, Hazal Gosku, A. Leingärtner-Goth, Steffano Ettori, R. Gnatyk, B. Hnatyk, Moritz Hütten, Judit Pérez Romero, Miguel Sánchez-Conde, Olga Sergijenko, original scientific article

Abstract: In the past decade, the observations of diffuse radio synchrotron emission toward galaxy clusters revealed cosmic-ray (CR) electrons and magnetic fields on megaparsec scales. However, their origin remains poorly understood to date, and several models have been discussed in the literature. CR protons are also expected to accumulate during the formation of clusters and probably contribute to the production of these high-energy electrons. In order to understand the physics of CRs in clusters, combining of observations at various wavelengths is particularly relevant. The exploitation of such data requires using a self-consistent approach including both the thermal and the nonthermal components, so that it is capable of predicting observables associated with the multiwavelength probes at play, in particular in the radio, millimeter, X-ray, and γ-ray bands. We develop and describe such a self-consistent modeling framework, called MINOT (modeling the intracluster medium (non-)thermal content and observable prediction tools) and make this tool available to the community. MINOT models the intracluster diffuse components of a cluster (thermal and nonthermal) as spherically symmetric. It therefore focuses on CRs associated with radio halos. The spectral properties of the cluster CRs are also modeled using various possible approaches. All the thermodynamic properties of a cluster can be computed self-consistently, and the particle physics interactions at play are processed using a framework based on the Naima software. The multiwavelength observables (spectra, profiles, flux, and images) are computed based on the relevant physical process, according to the cluster location (sky and redshift), and based on the sampling defined by the user. With a standard personal computer, the computing time for most cases is far shorter than one second and it can reach about one second for the most complex models. This makes MINOT suitable for instance for Monte Carlo analyses. We describe the implementation of MINOT and how to use it. We also discuss the different assumptions and approximations that are involved and provide various examples regarding the production of output products at different wavelengths. As an illustration, we model the clusters Abell 1795, Abell 2142, and Abell 2255 and compare the MINOT predictions to literature data. While MINOT was originally build to simulate and model data in the γ-ray band, it can be used to model the cluster thermal and nonthermal physical processes for a wide variety of datasets in the radio, millimeter, X-ray, and γ-ray bands, as well as the neutrino emission.
Keywords: galaxy clusters, intracluster medium, cosmic rays, radiation mechanisms, numerical methods
Published in RUNG: 27.01.2023; Views: 990; Downloads: 0
This document has many files! More...

42.
Classification of gamma-ray targets for velocity-dependent and subhalo-boosted dark-matter annihilation
Thomas Lacroix, Gaetán Facchinetti, Judit Pérez Romero, Martin Stref, Julien Lavalle, David Maurin, Miguel Sánchez-Conde, original scientific article

Abstract: Gamma-ray observations have long been used to constrain the properties of dark matter (DM), with a strong focus on weakly interacting massive particles annihilating through velocity-independent processes. However, in the absence of clear-cut observational evidence for the simplest candidates, the interest of the community in more complex DM scenarios involving a velocity-dependent cross-section has been growing steadily over the past few years. We present the first systematic study of velocity-dependent DM annihilation (in particular p-wave annihilation and Sommerfeld enhancement) in a variety of astrophysical objects, not only including the well-studied Milky Way dwarf satellite galaxies, but nearby dwarf irregular galaxies and local galaxy clusters as well. Particular attention is given to the interplay between velocity dependence and DM halo substructure. Uncertainties related to halo mass, phase-space and substructure modelling are also discussed in this velocity-dependent context. We show that, for s-wave annihilation, extremely large subhalo boost factors are to be expected, up to 10^11 in clusters and up to 10^6–10^7 in dwarf galaxies where subhalos are usually assumed not to play an important role. Boost factors for p-wave annihilation are smaller but can still reach 10^3 in clusters. The angular extension of the DM signal is also significantly impacted, with e.g. the cluster typical emission radius increasing by a factor of order 10 in the s-wave case. We also compute the signal contrast of the objects in our sample with respect to annihilation happening in the Milky Way halo. Overall, we find that the hierarchy between the brightest considered targets depends on the specific details of the assumed particle-physics model.
Keywords: dark matter theory, dwarf galaxies, galaxy clusters, gamma-ray theory
Published in RUNG: 27.01.2023; Views: 1254; Downloads: 0
This document has many files! More...

43.
Sensitivity of CTA to gamma-ray emission from the Perseus galaxy cluster
Judit Pérez Romero, published scientific conference contribution

Abstract: In these proceedings we summarize the current status of the study of the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. Gamma-ray emission is expected in galaxy clusters both from interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus constitutes one of the Key Science Projects to be carried out by the CTA Consortium. In this contribution, we focus on the DM-induced component of the flux. OurDMmodelling includes the substructures we expect in the main halo which will boost the annihilation signal significantly. We adopt an ON/OFF observation strategy and simulate the expected gamma-ray signals. Finally we compute the expected CTA sensitivity using a likelihood maximization analysis including the most recent CTA instrument response functions. In absence of signal, we show that CTA will allow us to provide stringent and competitive constraints on TeV DM, especially for the case of DM decay.
Keywords: dark matter, gamma-ray astronomy, galaxy clusters, cosmic rays and astroparticles
Published in RUNG: 27.01.2023; Views: 1105; Downloads: 15
URL Link to full text
This document has many files! More...

44.
Spatial extension of dark subhalos as seen by Fermi-LAT and the implications for WIMP constraints
Javier Coronado-Blázquez, Miguel Sánchez-Conde, Judit Pérez Romero, Alejandra Aguirre-Santaella, 2022, original scientific article

Abstract: Spatial extension has been hailed as a “smoking gun” in the gamma-ray search of dark galactic subhalos, which would appear as unidentified sources for gamma-ray telescopes. In this work, we study the sensitivity of the Fermi-LAT to extended subhalos using simulated data based on a realistic sky model. We simulate spatial templates for a set of representative subhalos, whose parameters were derived from our previous work with N-body cosmological simulation data. We find that detecting an extended subhalo and finding an unequivocal signal of angular extension requires, respectively, a flux 2 to 10 times larger than in the case of a pointlike source. By studying a large grid of models, where parameters such as the WIMP mass, annihilation channel, or subhalo model are varied significantly, we obtain the response of the LAT as a function of the product of annihilation cross-section times the J-factor. Indeed, we show that spatial extension can be used as an additional “filter” to reject subhalos candidates among the pool of unidentified LAT sources, as well as a smoking gun for positive identification. For instance, typical angular extensions of a few tenths of a degree are expected for the considered scenarios. Finally, we also study the impact of the obtained LAT sensitivity to such extended subhalos on the achievable dark matter constraints, which are a few times less constraining than comparable point-source limits.
Keywords: dark matter, cosmic rays and astroparticles, gamma-ray astronomy, particle astrophysics, particle dark matter
Published in RUNG: 26.01.2023; Views: 1384; Downloads: 0
This document has many files! More...

45.
Dark matter search in dwarf irregular galaxies with the Fermi Large Area Telescope
Viviana Gammaldi, Judit Pérez Romero, Javier Coronado-Blázquez, Mattia di Mauro, Ekaterina Karukes, Miguel Sánchez-Conde, Paolo Salucci, 2021, original scientific article

Abstract: We analyze 11 years of Fermi-Large Area Telescope (LAT) data corresponding to the sky regions of seven dwarf irregular (dIrr) galaxies. DIrrs are dark matter (DM)-dominated systems, proposed as interesting targets for the indirect search of DM with gamma rays. The galaxies represent interesting cases with a strong disagreement between the density profiles (core versus cusp) inferred from observations and numerical simulations. In this work, we addressed the problem by considering two different DM profiles, based on both the fit to the rotation curve (in this case, a Burkert cored profile) and results from N-body cosmological simulations (i.e., Navarro-Frenk-White cuspy profile). We also include halo substructure in our analysis, which is expected to boost the DM signal by a factor of 10 in halos such as those of dIrrs. For each DM model and dIrr, we create a spatial template of the expected DM-induced gamma-ray signal to be used in the analysis of Fermi-LAT data. No significant emission is detected from any of the targets in our sample. Thus, we compute upper limits on the DM annihilation cross section versus mass parameter space. Among the seven dIrrs, we find IC10 and NGC6822 to yield the most stringent individual constraints, independently of the adopted DM profile. We also produce combined DM limits for all objects in the sample, which turn out to be dominated by IC10 for all DM models and annihilation channels, i.e., b¯b, τ+τ−, and W+W−. The strongest constraints are obtained for b¯b and are at the level of <σv>∼7×10−26 cm3 s−1 at mχ ∼ 6 GeV. Though these limits are a factor of ∼3 higher than the thermal relic cross section at low weakly interacting massive particles masses, they are independent from and complementary to those obtained by means of other targets.
Keywords: Dark matter, gamma-ray astronomy, galaxies, astronomical masses and mass distributions
Published in RUNG: 26.01.2023; Views: 1047; Downloads: 0
This document has many files! More...

46.
ROUND TABLE: TRANSLATION IN AN INTERCULTURAL CONTEXT
Barbara Pregelj, Ilide Carmignani, Elisabeth Pérez Fernández, Mariela Nagle, other performed works

Abstract: Translating children's books into different cultures means not only processing the text into another language, but also transferring the level of illustration, which is an additional challenge. There, the different realities of children's lives play a big role: environment, skin colour, religion, etc. as well as cultural paradigms. Panel Introduction: Marifé Boix Garcia, Frankfurter Buchmesse GmbH, Germany Elisabeth Pérez Fernández, illustratrice, Spagna - GoH 2022; Barbara Pregelj, editor and translator, Malinc, Slovenia - GoH 2023; Ilide Carmignani, translator, Italy - GoH 2024 Moderator: Mariela Nagle, consultant, Germany Organized by Frankfurter Buchmesse GmbH In the framework of Aldus Up
Keywords: translation, children's literature, Slovenian authors, Slovenia guest of Honour 2023
Published in RUNG: 22.09.2022; Views: 1169; Downloads: 0
This document has many files! More...

47.
Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes : a multi-instrumental approach
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, Marco Pandolfi, 2021, original scientific article

Abstract: Providing reliable observations of aerosol particles' absorption properties at spatial and temporal resolutions suited to climate models is of utter importance to better understand the effects that atmospheric particles have on climate. Nowadays, one of the instruments most widely used in international monitoring networks for in situ surface measurements of light absorption properties of atmospheric aerosol particles is the multi-wavelength dual-spot Aethalometer, AE33. The AE33 derives the absorption coefficients of aerosol particles at seven different wavelengths from the measurements of the optical attenuation of light through a filter where particles are continuously collected. An accurate determination of the absorption coefficients from the AE33 instrument relies on the quantification of the non-linear processes related to the sample collection on the filter. The multiple-scattering correction factor (C), which depends on the filter tape used and on the optical properties of the collected particles, is the parameter with both the greatest uncertainty and the greatest impact on the absorption coefficients derived from the AE33 measurements. Here we present an in-depth analysis of the AE33 multiple-scattering correction factor C and its wavelength dependence for two different and widely used filter tapes, namely the old, and most referenced, TFE-coated glass, or M8020, filter tape and the currently, and most widely used, M8060 filter tape. For performing this analysis, we compared the attenuation measurements from AE33 with the absorption coefficients measured with different filter-based techniques. On-line co-located multi-angle absorption photometer (MAAP) measurements and off-line PP_UniMI polar photometer measurements were employed as reference absorption measurements for this work. To this aim, we used data from three different measurement stations located in the north-east of Spain, namely an urban background station (Barcelona, BCN), a regional background station (Montseny, MSY) and a mountaintop station (Montsec d'Ares, MSA). The median C values (at 637 nm) measured at the three stations ranged between 2.29 (at BCN and MSY, lowest 5th percentile of 1.97 and highest 95th percentile of 2.68) and 2.51 (at MSA, lowest 5th percentile of 2.06 and highest 95th percentile of 3.06). The analysis of the cross-sensitivity to scattering, for the two filter tapes considered here, revealed a large increase in the C factor when the single-scattering albedo (SSA) of the collected particles was above a given threshold, up to a 3-fold increase above the average C values. The SSA threshold appeared to be site dependent and ranged between 0.90 to 0.95 for the stations considered in the study. The results of the cross-sensitivity to scattering displayed a fitted constant multiple-scattering parameter, Cf, of 2.21 and 1.96, and a cross-sensitivity factor, ms, of 1.8 % and 3.4 % for the MSY and MSA stations, respectively, for the TFE-coated glass filter tape. For the M8060 filter tape, Cf values of 2.50, 1.96 and 1.82 and ms values of 1.6 %, 3.0 % and 4.9 % for the BCN, MSY and MSA stations, respectively, were obtained. SSA variations also influenced the spectral dependence of C, which showed an increase with wavelength when SSA was above the site-dependent threshold. Below the SSA threshold, no statistically significant dependence of C on the wavelength was observed. For the measurement stations considered here, the wavelength dependence of C was to some extent driven by the presence of dust particles during Saharan dust outbreaks that had the potential to increase the SSA above the average values. At the mountaintop station, an omission of the wavelength dependence of the C factor led to an underestimation of the absorption Ångström exponent (AAE) by up to 12 %. Differences in the absorption coefficient determined from AE33 measurements at BCN, MSY and MSA of around 35 %–40 % can be expected when using the site-dependent experimentally obtained C value instead of the nominal C value. Due to the fundamental role that the SSA of the particles collected on the filter tape has in the multiple-scattering parameter C, we present a methodology that allows the recognition of the conditions upon which the use of a constant and wavelength-independent C is feasible.
Keywords: black carbon, aerosol absorption, filter photometer, artifact
Published in RUNG: 01.10.2021; Views: 1987; Downloads: 0
This document has many files! More...

48.
Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemi Perez, Gloria Titos, Griša Močnik, Xavier Querol, A. Alastuey, 2021, original scientific article

Abstract: Accurate measurements of the horizontal and vertical distribution of atmospheric aerosol particle optical properties are key for a better understanding of their impact on the climate. Here we present the results of a measurement campaign based on instrumented flights over north-eastern Spain. We measured vertical profiles of size-segregated atmospheric particulate matter (PM) mass concentrations and multi-wavelength scattering and absorption coefficients in the western Mediterranean basin (WMB). The campaign took place during typical summer conditions, characterized by the development of a vertical multi-layer structure, under both summer regional pollution episodes (REGs) and Saharan dust events (SDEs). REG patterns in the region form under high insolation and scarce precipitation in summer, favouring layering of highly aged fine-PM strata in the lower few kma.s.l. The REG scenario prevailed during the entire measurement campaign. Additionally, African dust outbreaks and plumes from northern African wildfires influenced the study area. The vertical profiles of climate-relevant intensive optical parameters such as single-scattering albedo (SSA); the asymmetry parameter (g); scattering, absorption and SSA Ångström exponents (SAE, AAE and SSAAE); and PM mass scattering and absorption cross sections (MSC and MAC) were derived from the measurements. Moreover, we compared the aircraft measurements with those performed at two GAW–ACTRIS (Global Atmosphere Watch–Aerosol, Clouds and Trace Gases) surface measurement stations located in north-eastern Spain, namely Montseny (MSY; regional background) and Montsec d'Ares (MSA; remote site). Airborne in situ measurements and ceilometer ground-based remote measurements identified aerosol air masses at altitudes up to more than 3.5 kma.s.l. The vertical profiles of the optical properties markedly changed according to the prevailing atmospheric scenarios. During SDE the SAE was low along the profiles, reaching values < 1.0 in the dust layers. Correspondingly, SSAAE was negative, and AAE reached values up to 2.0–2.5, as a consequence of the UV absorption increased by the presence of the coarse dust particles. During REG, the SAE increased to > 2.0, and the asymmetry parameter g was rather low (0.5–0.6) due to the prevalence of fine PM, which was characterized by an AAE close to 1.0, suggesting a fossil fuel combustion origin. During REG, some of the layers featured larger AAE (> 1.5), relatively low SSA at 525 nm (< 0.85) and high MSC (> 9 m2 g−1) and were associated with the influence of PM from wildfires. Overall, the SSA and MSC near the ground ranged around 0.85 and 3 m2 g−1, respectively, and increased at higher altitudes, reaching values above 0.95 and up to 9 m2 g−1. The PM, MSC and MAC were on average larger during REG compared to SDE due to the larger scattering and absorption efficiency of fine PM compared with dust. The SSA and MSC had quite similar vertical profiles and often both increased with height indicating the progressive shift toward PM with a larger scattering efficiency with altitude. This study contributes to our understanding of regional-aerosol vertical distribution and optical properties in the WMB, and the results will be useful for improving future climate projections and remote sensing or satellite retrieval algorithms.
Keywords: aerosol, climate change, Saharan dust, black carbon, aerosol absorption, aerosol scattering
Published in RUNG: 14.01.2021; Views: 2477; Downloads: 0
This document has many files! More...

49.
50.
Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors
Ronan Crepin, Gianluca Veggiani, Selma Djender, Anne Beugnet, Francois Planeix, Christophe Pichon, Sandrine Moutel, Sebastian Amigorena, Franck Pérez, Nicolae Ghinea, Ario De Marco, 2017, original scientific article

Abstract: Antibodies are essential reagents that are increasingly used in diagnostics and therapy. Their specificity and capacity to recognize their native antigen are critical characteristics for their in vivo application. Follicle-stimulating hormone receptor is a GPCR protein regulating ovarian follicular maturation and spermatogenesis. Recently, its potentiality as a cancer biomarker has been demonstrated but no antibody suitable for in vivo tumor targeting and treatment has been characterized so far. In this paper we describe the first successful attempt to recover recombinant antibodies against the FSHR and that: i) are directly panned from a pre-immune library using whole cells expressing the target receptor at their surface; ii) show inhibitory activity towards the FSH-induced cAMP accumulation; iii) do not share the same epitope with the natural binder FSH; iv) can be produced inexpensively as mono- or bivalent functional molecules in the bacterial cytoplasm. We expect that the proposed biopanning strategy will be profitable to identify useful functional antibodies for further members of the GPCR class.
Keywords: nanobodies, GPCR proteins, FSHR, panning, pre-immune antibody library
Published in RUNG: 19.10.2017; Views: 4058; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top