Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Particle number size distribution statistics at City-Centre Urban Background, urban background, and remote stations in Greece during summer
S. Vratolis, Maria I. Gini, Spiros Bezantakos, Iasonas Stavroulas, Nikos Kalivitis, E. Kostenidou, E. Louvaris, D. Siakavaras, George Biskos, Nikolaos Mihalopoulos, 2019, original scientific article

Abstract: Particle number size distribution measurements were conducted during the summer of 2012 at City-Centre Urban Background (Patras-C), Urban Background (ICE-HT in Patras, DEM in Athens, EPT in Thessaloniki), and Regional Background stations (FIN in Crete). At the City-Centre Urban Background station, the average number distribution had a geometric mean diameter peak approximately at 60 nm and the highest number concentration, whereas at the Regional Background station and the Urban Background stations it displayed a major peak approximately at 100 nm, with the Regional Background station exhibiting the lowest number concentration. The particle number size distribution at each site was divided into size fractions and, based on their diurnal variation and previous studies, we concluded that the main sources for the City-Centre Urban Background station are traffic and the regional background concentration, for the Urban Background stations fresh traffic, aged traffic, cooking and the regional background concentration, and for the Regional Background station local activities (tourism, cooking) and regional background concentration. The median number concentration that is attributed to regional background concentration for the City-Centre Urban Background, the Urban Background and the Regional Background stations are respectively 13, 29 and 45% of the total number concentration. Nucleation events were identified at DEM station, where the newly formed particles accounted for 4% of the total particle concentration for the measurement period in the size range 10–20 nm, EPT, where they accounted for 12%, and FIN, where they accounted for 1%, respectively. New Particle Formation events contribution during summer to Condensation Cloud Nuclei were therefore insignificant in the Eastern Mediterranean. Modal analysis was performed on the number distributions and the results were classified in clusters. At the City-Centre Urban Background station, the cluster-source that dominated number concentration and frequency is related to fresh and aged traffic emissions, at the Urban Background stations aged traffic emissions, while at the Regional Background station number and frequency were dominated by the regional background concentration. Based on cluster analysis, 18% of the median number distribution was due to long range transport at the City-Centre Urban Background site, 37% at the Urban Background sites, and 59% at the Regional Background site. The Flexible Particle Dispersion Model (FLEXPART) was used in order to acquire geographic origin clusters and we concluded that the Etesian flow increases the median regional background number concentration in the Mediterranean basin by a factor of 2.5–4.
Keywords: Mediterranean aerosol, particle number size distribution clustering, FLEXPART clustering
Published in RUNG: 13.05.2024; Views: 98; Downloads: 0
This document has many files! More...

2.
The Unmanned Systems Research Laboratory (USRL) : a new facility for UAV-based atmospheric observations
Maria Kezoudi, Christos Keleshis, Panayiota Antoniou, George Biskos, Murat Bronz, Christos Constantinides, Maximillien Desservettaz, Ru-Shan Gao, Joe Girdwood, Griša Močnik, 2021, original scientific article

Abstract: The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks.
Keywords: landscape, proximity, still life, COVID-19, domesticity
Published in RUNG: 16.08.2021; Views: 1755; Downloads: 147
URL Link to full text
This document has many files! More...

Search done in 0.01 sec.
Back to top