Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations
Marjan Savadkoohi, Marco Pandolfi, Olivier Favez, Jean-Philippe Putaud, Konstantinos Eleftheriadis, Markus Fiebig, Philip Hopke, Paolo Laj, A. Wiedensohler, Griša Močnik, 2024, original scientific article

Abstract: A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial–temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling regression MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2/g from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2/g from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasizes the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
Keywords: equivalent black carbon, mass absorption cross-section, filter absorption photometers, elemental carbon, absorption, site specific MAC, rolling MAC
Published in RUNG: 04.03.2024; Views: 185; Downloads: 3
.pdf Full text (2,46 MB)
This document has many files! More...

2.
3.
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Vaios Moschos, Katja Dzepina, Deepika Bhattu, Houssni Lamkaddam, Roberto Casotto, Kaspar R. Daellenbach, Francesco Canonaco, Pragati Rai, Wenche Aas, Silvia Becagli, Giulia Calzolai, Konstantinos Eleftheriadis, Claire E. Moffett, Jürgen Schnelle-Kreis, Mirko Severi, Sangeeta Sharma, Henrik Skov, Mika Vestenius, Wendy Zhang, Hannele Hakola, Heidi Hellén, Lin Huang, Jean-Luc Jaffrezo, Andreas Massling, Jakob K. Nøjgaard, Tuuka Petäjä, Olga Popovicheva, Rebecca J. Sheesley, Rita Traversi, Karl Espen Yttri, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Imad El Haddad, 2022, original scientific article

Abstract: Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.
Keywords: Arctic, Organic aerosols, Emission sources, Climate change
Published in RUNG: 01.03.2022; Views: 1498; Downloads: 0
This document has many files! More...

4.
Comparison and complementary use of in situ and remote sensing aerosol measurements in the Athens Metropolitan Area
S. Vratolis, Griša Močnik, Konstantinos Eleftheriadis, 2020, original scientific article

Abstract: In the summer of 2014 in situ and remote sensing instruments were deployed in Athens, in order to study the concentration, physical properties, and chemical composition of aerosols. In this manuscript we aim to combine the measurements of collocated in situ and remote sensing instruments by comparison and complementary use, in order to increase the accuracy of predictions concerning climate change and human health. We also develop a new method in order to select days when a direct comparison on in situ and remote sensing instruments is possible. On selected days that displayed significant turbulence up to approximately 1000 m above ground level (agl), we acquired the aerosol extinction or scattering coefficient by in situ instruments using three approaches. In the first approach the aerosol extinction coefficient was acquired by adding a Nephelometer scattering coefficient in ambient conditions and an Aethalometer absorption coefficient. The correlation between the in situ and remote sensing instruments was good (coefficient of determination equal to 0.69). In the second approach we acquired the aerosol refractive index by fitting dry Nephelometer and Aethalometer measurements with Mie algorithm calculations of the scattering and absorption coefficients for the size distribution up to a maximum diameter of 1000 nm obtained by in situ instruments. The correlation in this case was relatively good ( equal to 0.56). Our next step was to compare the extinction coefficient acquired by remote sensing instruments to the scattering coefficient calculated by Mie algorithm using the size distribution up to a maximum diameter of 1000 nm and the equivalent refractive index (), which is acquired by the comparison of the size distributions obtained by a Scanning Mobility Particle Sizer (SMPS) and an Optical Particle Counter (OPC). The agreement between the in situ and remote sensing instruments in this case was not satisfactory ( equal to 0.35). The last comparison for the selected days was between the aerosol extinction Ångström exponent acquired by in situ and remote sensing instruments. The correlation was not satisfactory ( equal to 0.4), probably due to differences in the number size distributions present in the air volumes measured by in situ and remote sensing instruments. We also present a day that a Saharan dust event occurred in Athens in order to demonstrate the information we obtain through the synergy of in situ and remote sensing instruments on how regional aerosol is added to local aerosol, especially during pollution events due to long range transport.
Keywords: Aerosol mixing in the vertical, In situ — Remote sensing comparison, Regional aerosol addition to local aerosol
Published in RUNG: 09.04.2020; Views: 2826; Downloads: 0
This document has many files! More...

Search done in 0.03 sec.
Back to top