Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
In situ identification of aerosol types in Athens, Greece, based on long-term optical and on online chemical characterization
Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, Eleni Liakakou, Umesh Chandra Dumka, Konstantinos Dimitriou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, original scientific article

Abstract: Absorption Ångström Exponent (AAE) and Scattering Ångström Exponent (SAE) values, derived from aethalometer and nephelometer measurements during a period of 3 years at an urban background site in Athens, are combined for the first aerosol type classification using in situ measurements in the eastern Mediterranean. In addition, single scattering albedo (SSA) and its wavelength dependence (dSSA), as well as the chemical composition of fine aerosols and precursor gases from collocated measurements, are utilized to provide further insights on the optical-chemical characterization and related sources of seven identified aerosol types. Urban aerosols are mostly characterized as Black Carbon (BC)-dominated (76.3%), representing a background atmosphere where fossil-fuel combustion is dominant throughout the year, while 14.3% of the cases correspond to the mixed Brown Carbon (BrC)-BC type, with a higher frequency in winter. The BrC type is associated with the highest scattering and absorption coefficients during winter nights, representing the impact from residential wood-burning emissions. Dust mixed with urban pollution (1.2%) and large particles mixed with BC (5.3%) have a higher frequency in spring. Furthermore, aging processes and BC coating with organic and inorganic species with weak spectral absorption (AAE<1) account for 2.2%, with a differentiation between small and large particles. dSSA is recognized as a useful parameter for aerosol characterization, since fine aerosols are associated with negative dSSA values. The identified aerosol types are examined on a seasonal, monthly, hourly basis and by potential source areas, as well as in comparison with fine-aerosol chemical composition and apportioned organic aerosol source contributions, in an attempt to explore the linkage between optical, physical and chemical aerosol properties. Chemical analysis indicates high organic fraction (60–68%) for the BrC and BrC/BC, 20–30% larger compared to other types. The results are essential for parametrization in chemical transport models and for reducing the uncertainty in the assessment of aerosol radiative effects.
Keywords: aerosol types, classification, AAE, SAE, dSSA, chemical composition, sources, Athens
Published in RUNG: 10.05.2024; Views: 58; Downloads: 0
URL Link to file
This document has many files! More...

2.
Soft subalgebras and ideals of BCK/BCI-algebras based on N -structures
Elhan Hassani Sadrabadi, Hashem Bordbar, Rajab Ali Borzooei, Arsham Borumand Saeid, Young Bae Jun, 2021, original scientific article

Keywords: N-ideal of types, soft N-subalgebra, soft N-ideal
Published in RUNG: 23.08.2021; Views: 1723; Downloads: 0
This document has many files! More...

3.
Studying TDEs in the era of LSST
Katja Bricman, Andreja Gomboc, 2019, published scientific conference contribution abstract

Keywords: The observing strategy with continuous scanning and large sky coverage of the upcoming ground-based Large Synoptic Survey Telescope (LSST) will make it a perfect tool in search of rare transients, such as Tidal Disruption Events (TDEs). Bright optical flares resulting from tidal disruption of stars by their host supermassive black hole (SMBH) can provide us with important information about the mass of the SMBH involved in the disruption and thus enable the study of quiescent SMBHs, which represent a large majority of SMBHs found in centres of galaxies. These types of transients are extremely rare, with only about few tens of candidates discovered so far. It is expected that the LSST will provide a large sample of new TDE light curves. Here we present simulations of TDE observations using an end-to-end LSST simulation framework. Based on the analysis of simulated light curves we estimate the number of TDEs with good quality light curves the LSST is expected to discover in 10 years of observations. In addition, we investigate whether TDEs observed by the LSST could be used to probe the SMBH mass distribution in the universe. The participation at this conference is supported by the Action CA16104 Gravitational waves, black holes and fundamental physics (GWverse), supported by COST (European Cooperation in Science and Technology).
Published in RUNG: 04.01.2021; Views: 2684; Downloads: 0

Search done in 0.02 sec.
Back to top