Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


161 - 170 / 202
First pagePrevious page12131415161718192021Next pageLast page
161.
The surface detector array of the Telescope Array experiment
T. Abu-Zayyad, Jon Paul Lundquist, 2012, original scientific article

Abstract: The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.
Keywords: Ultra-high energy cosmic rays, Telescope Array experiment, Extensive air shower array
Published in RUNG: 19.05.2020; Views: 2742; Downloads: 0
This document has many files! More...

162.
Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique
T. Abu-Zayyad, Jon Paul Lundquist, 2015, original scientific article

Abstract: We measure the spectrum of cosmic rays with energies greater than eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.
Keywords: Ultra-high energy cosmic rays, Telescope Array, Hybrid spectrum
Published in RUNG: 30.04.2020; Views: 2771; Downloads: 0
This document has many files! More...

163.
Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV
R.U. Abbasi, Jon Paul Lundquist, 2010, original scientific article

Abstract: We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (Xmax), for air shower events collected by the High-Resolution Fly’s Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d⟨Xmax⟩/d[log(E)] of 47.9 ± 6.0 (stat) ± 3.2 (syst) g/cm^2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4×10^18 eV.
Keywords: Cosmic rays, Energy spectrum, Telescope Array, Hybrid, Ultra high energy
Published in RUNG: 27.04.2020; Views: 2748; Downloads: 0
This document has many files! More...

164.
The hybrid energy spectrum of Telescope Array’s Middle Drum Detector and surface array
R.U. Abbasi, Jon Paul Lundquist, 2015, original scientific article

Abstract: The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.
Keywords: Cosmic rays, Energy spectrum, Telescope Array, Hybrid, Ultra high energy
Published in RUNG: 27.04.2020; Views: 2700; Downloads: 0
This document has many files! More...

165.
166.
The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years
R.U. Abbasi, Jon Paul Lundquist, 2016, original scientific article

Abstract: The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10^17.2eV measured by the fluorescence detectors and a comparison with previously published results.
Keywords: Cosmic rays, Ultra-high energy, Fluorescence detector, Energy spectrum, Ankle, GZK cutoff
Published in RUNG: 27.04.2020; Views: 2779; Downloads: 0
This document has many files! More...

167.
Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode
R.U. Abbasi, Jon Paul Lundquist, 2015, original scientific article

Abstract: Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly’s Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.
Keywords: Ultra-High Energy Cosmic Rays, Cosmic ray composition, Atmospheric fluorescence, Extensive air shower array, Hybrid, Telescope Array
Published in RUNG: 24.04.2020; Views: 3019; Downloads: 0
This document has many files! More...

168.
Mass composition of cosmic rays with energies from 10^17.2 eV to 10^20 eV using surface and fluorescence detectors of the Pierre Auger Observatory
Gašper Kukec Mezek, 2018, published scientific conference contribution

Abstract: Ultra-high-energy cosmic rays (UHECRs) are highly energetic particles with EeV energies, exceeding the capabilities of man-made colliders. They hold information on extreme astrophysical processes that create them and the medium they traverse on their way towards Earth. However, their mass composition at such energies is still unclear, because data interpretation depends on our choice of high energy hadronic interaction models. With its hybrid detection method, the Pierre Auger Observatory has the possibility to detect extensive air showers with an array of surface water-Cherenkov stations (SD) and fluorescence telescopes (FD). We present recent mass composition results from the Pierre Auger Collaboration using observational parameters from SD and FD measurements. Using the full dataset of the Pierre Auger Observatory, implications on composition can be made for energies above 10^17.2 eV.
Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, fluorescence telescopes, water-Cherenkov stations
Published in RUNG: 24.05.2019; Views: 3400; Downloads: 110
.pdf Full text (573,00 KB)

169.
170.
Mass composition of ultra-high energy cosmic rays at the Pierre Auger Observatory
Gašper Kukec Mezek, 2019, doctoral dissertation

Abstract: Cosmic rays with energies above 10^18 eV, usually referred to as ultra-high energy cosmic rays (UHECR), have been a mystery from the moment they have been discovered. Although we have now more information on their extragalactic origin, their direct sources still remain hidden due to deviations caused by galactic magnetic fields. Another mystery, apart from their production sites, is their nature. Their mass composition, still uncertain at these energies, would give us a better understanding on their production, acceleration, propagation and capacity to produce extensive air showers in the Earth's atmosphere. Mass composition studies of UHECR try to determine their nature from the difference in development of their extensive air showers. In this work, observational parameters from the hybrid detection system of the Pierre Auger Observatory are used in a multivariate analysis to obtain the mass composition of UHECR. The multivariate analysis (MVA) approach combines a number of mass composition sensitive variables and tries to improve the separation between different UHECR particle masses. Simulated distributions of different primary particles are fitted to measured observable distributions in order to determine individual elemental fractions of the composition. When including observables from the surface detector, we find a discrepancy in the estimated mass composition between a mixed simulation sample and the Pierre Auger data. Our analysis results from the Pierre Auger data are to a great degree independent on hadronic interaction models. Although they differ at higher primary masses, the different models are more consistent, when combining fractions of oxygen and iron. Compared to previously published results, the systematic uncertainty from hadronic interaction models is roughly four times smaller. Our analysis reports a predominantly heavy composition of UHECR, with more than a 50% fraction of oxygen and iron at low energies. The composition is then becoming heavier with increasing energy, with a fraction of oxygen and iron above 80% at the highest energies.
Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, machine learning, multivariate analysis
Published in RUNG: 03.04.2019; Views: 4995; Downloads: 187
.pdf Full text (17,53 MB)

Search done in 0.06 sec.
Back to top