Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Status and performance of the underground muon detector of the Pierre Auger Observatory
A.M. Botti, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: The Auger Muons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger Observatory, whose purpose is to lower the energy threshold of the observatory down to 10^16.5 eV, and to measure the muonic content of air showers directly. These measurements will significantly contribute to the determination of primary particle masses in the range between the second knee and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant to two triangular grids of water-Cherenkov stations with spacings of 433 and 750 m; each grid position is equipped with a 30 m^2 plastic scintillator buried at 2.3 m depth. After the engineering array completion in early 2018 and general improvements to the design, the production phase commenced. In this work, we report on the status of the underground muon detector, the progress of its deployment, and the performance achieved after two years of operation. The detector construction is foreseen to finish by mid-2022.
Keywords: Pierre Auger Observatory, AMIGA, indirect detection, surface detection, ultra-high energy, cosmic rays, composition, muon detection
Published in RUNG: 04.10.2023; Views: 772; Downloads: 5
.pdf Full text (2,21 MB)
This document has many files! More...

2.
Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory
J. Vicha, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: We present a new method to explore simple ad-hoc adjustments to the predictions of hadronic interaction models to improve their consistency with observed two-dimensional distributions of the depth of shower maximum, Xmax, and signal at ground level, as a function of zenith angle. The method relies on the assumption that the mass composition is the same at all zenith angles, while the atmospheric shower development and attenuation depend on composition in a correlated way. In the present work, for each of the three leading LHC-tuned hadronic interaction models, we allow a global shift ΔXmax of the predicted shower maximum, which is the same for every mass and energy, and a rescaling R_Had of the hadronic component at ground level which depends on the zenith angle. We apply the analysis to 2297 events reconstructed by both fluorescence and surface detectors at the Pierre Auger Observatory with energies 10^18.5−10^19.0 eV. Given the modeling assumptions made in this analysis, the best fit reaches its optimum value when shifting the Xmax predictions of hadronic interaction models to deeper values and increasing the hadronic signal at both extreme zenith angles. The resulting change in the composition towards heavier primaries alleviates the previously identified model deficit in the hadronic signal (commonly called the muon deficit), but does not remove it. Because of the size of the required corrections ΔXmax and R_Had and the large number of events in the sample, the statistical significance of the corrections is large, greater than 5σstat even for the combination of experimental systematic shifts within 1σsys that are the most favorable for the models.
Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, ground array, surface detection, ultra-high energy, cosmic rays, composition, Xmax, muon deficit, air-shower models
Published in RUNG: 04.10.2023; Views: 612; Downloads: 6
.pdf Full text (1,14 MB)
This document has many files! More...

3.
Search done in 0.02 sec.
Back to top