Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Search for evidence of neutron fluxes using Pierre Auger Observatory data
Danelise De Oliveira Franco, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: Astrophysical neutral particles, such as neutrons, can point directly to their sources since they are not affected by magnetic fields. We expect neutron production in the immediate vicinity of the acceleration sites due to cosmic ray interactions. Hence, a high-energy neutron flux could help to identify sources of cosmic rays in the EeV range. Free neutrons, although unstable, can travel a mean distance of 9.2 kpc times their energy in EeV. Due to the neutron instability, we limit the searches to Galactic candidate sources. Since air showers initiated by a neutron are indistinguishable from those generated by a proton, we would recognize a neutron flux as an excess of events from the direction of its source. Previous searches using events with a zenith angle up to 60^◦ and energies above 1 EeV found no surplus of events that would indicate a neutron flux. We present the results of the search for evidence of high-energy neutron fluxes using a data set about three times larger than the previous work. We investigate the sky in the field of view of the Pierre Auger Observatory, narrowing down to specific directions of candidate sources. With respect to previous works, we extend the angular range up to zenith angles of 80^◦ , reaching declinations from −90^◦ to +45^◦ , and the energy range going as low as 0.1 EeV. The extension in the field of view provides exposure to the Crab Nebula for the first time.
Keywords: neutrons, cosmic ray, Pierre Auger Observatory, Crab Nebula, proton, high-energy neutron flux
Published in RUNG: 14.11.2023; Views: 532; Downloads: 5
.pdf Full text (472,98 KB)
This document has many files! More...

2.
Lens parameters for Gaia18cbf – a long gravitational microlensing event in the Galactic plane
K. Kruszyńska, Ł. Wyrzykowski, K. A. Rybicki, M. Maskoliūnas, E. Bachelet, N. Rattenbury, P. Mróz, P. Zieliński, K. Howil, Z. Kaczmarek, S. T. Hodgkin, N. Ihanec, I. Gezer, M. Gromadzki, P. Mikołajczyk, A. Stankevičiūtė, V. Čepas, E. Pakštienė, K. Šiškauskaitė, J. Zdanavičius, V. Bozza, M. Dominik, R. Figuera Jaimes, A. Fukui, M. Hundertmark, N. Narita, R. Street, Y. Tsapras, Mateusz Bronikowski, M. Jabłońska, A. Jabłonowska, O. Ziółkowska, 2022, original scientific article

Abstract: Context. The timescale of a microlensing event scales as a square root of a lens mass. Therefore, long-lasting events are important candidates for massive lenses, including black holes. Aims. Here, we present the analysis of the Gaia18cbf microlensing event reported by the Gaia Science Alerts system. It exhibited a long timescale and features that are common for the annual microlensing parallax effect. We deduce the parameters of the lens based on the derived best fitting model. Methods. We used photometric data collected by the Gaia satellite as well as the follow-up data gathered by the ground-based observatories. We investigated the range of microlensing models and used them to derive the most probable mass and distance to the lens using a Galactic model as a prior. Using a known mass-brightness relation, we determined how likely it is that the lens is a main-sequence (MS) star. Results. This event is one of the longest ever detected, with the Einstein timescale of tE = 491.41−84.94+128.31 days for the best solution and tE = 453.74−105.74+178.69 days for the second best. Assuming Galaxy priors, this translates to the most probable lens masses of ML = 2.65−1.48+5.09 M⊙ and ML = 1.71−1.06+3.78 M⊙, respectively. The limits on the blended light suggest that this event was most likely not caused by a MS star, but rather by a dark remnant of stellar evolution.
Keywords: gravitational lensing: micro, Galaxy: stellar content, stars: black holes, stars: neutron, Astrophysics - Solar and Stellar Astrophysics
Published in RUNG: 13.11.2023; Views: 554; Downloads: 4
.pdf Full text (9,87 MB)
This document has many files! More...

3.
Chasing gravitational waves with the Cherenkov Telescope Array
J. G. Green, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The detection of gravitational waves (GWs) from a binary neutron star (BNS) merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this GW event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100 GeV) photons which have yet to be detected in coincidence with a GW signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. Achieving such a feat will require a comprehensive real-time strategy capable of coordinating searches over potentially very large regions of the sky. This work will evaluate and provide estimations on the number of GW-CTA events determined from simulated BNS systems and short GRBs, considering both on and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA.
Keywords: gravitational waves, binary neutron star merger, short gamma-ray bursts
Published in RUNG: 15.09.2023; Views: 667; Downloads: 4
.pdf Full text (1,66 MB)
This document has many files! More...

4.
On the GeV Emission of the Type I BdHN GRB 130427A
Remo Ruffini, Rahim Moradi, Jorge Armando Rueda, Carlo Luciano Bianco, Christian Cherubini, Simonetta Filippi, Yen-Chen Chen, Mile Karlica, Narek Sahakyan, Yu Wang, She Sheng Xue, Laura Beccera, 2019, original scientific article

Abstract: We propose that the inner engine of a type I binary-driven hypernova (BdHN) is composed of Kerr black hole (BH) in a non-stationary state, embedded in a uniform magnetic field B_0 aligned with the BH rotation axis and surrounded by an ionized plasma of extremely low density of 10^−14 g cm−3. Using GRB 130427A as a prototype, we show that this inner engine acts in a sequence of elementary impulses. Electrons accelerate to ultrarelativistic energy near the BH horizon, propagating along the polar axis, θ = 0, where they can reach energies of ~10^18 eV, partially contributing to ultrahigh-energy cosmic rays. When propagating with $\theta \ne 0$ through the magnetic field B_0, they produce GeV and TeV radiation through synchroton emission. The mass of BH, M = 2.31M ⊙, its spin, α = 0.47, and the value of magnetic field B_0 = 3.48 × 10^10 G, are determined self consistently to fulfill the energetic and the transparency requirement. The repetition time of each elementary impulse of energy ${ \mathcal E }\sim {10}^{37}$ erg is ~10^−14 s at the beginning of the process, then slowly increases with time evolution. In principle, this "inner engine" can operate in a gamma-ray burst (GRB) for thousands of years. By scaling the BH mass and the magnetic field, the same inner engine can describe active galactic nuclei.
Keywords: black hole physics, binaries, gamma-ray burst, neutron stars, supernovae, Astrophysics - High Energy Astrophysical Phenomena
Published in RUNG: 20.07.2020; Views: 2758; Downloads: 0
This document has many files! More...

5.
Exploring the Universe with supernovae
Tanja Petrushevska, published scientific conference contribution abstract (invited lecture)

Abstract: Supernovae have proven to be exquisite tools for a variety of astrophysics and cosmology topics. In this lecture, I will highlight a selection of dedicated tele- scopic surveys for detecting supernovae and I will report some of our interesting discoveries during the past few years. I will dedicate special attention to strongly lensed supernovae by galaxies and galaxy clusters. Under the right circumstances, multiple images of the lensed supernovae can be observed, and due to the variable nature of the objects, the difference between the arrival times of the images can be measured. Since the images have taken different paths through space before reaching us, the time-differences are sensitive to the expansion rate of the universe. Therefore, measuring time delays from strongly lensed supernovae is emerging as a novel and independent tool for estimating the Hubble constant (H0). This is very important given the recent discord in the value of H0 from two methods that probe different distance ranges: the ESA mission Planck value corresponds to 67.74 ± 0.46 km s−1 Mpc−1; [1], while a reanalysis of the local distance scale gives 73.24 ± 1.74 km s−1 Mpc−1; [2, 3], these measurements thus being inconsistent at the ≈ 3.5σ level. Therefore, the results of additional independent and high- precision techniques, which rely on different physics, are of key importance. In this context, I will report our discovery of the first resolved multiply-imaged gra- vitationally lensed supernova Type Ia [4]. Moving forward, I will discuss some of the prospects of upcoming facilities such as the Large Synoptic Survey Telescope and James Webb Space Telescope [5, 6].
Keywords: supernovae, strong lensing, neutron stars
Published in RUNG: 29.11.2018; Views: 2957; Downloads: 0
This document has many files! More...

6.
A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary
Tanja Petrushevska, 2018, original scientific article

Abstract: Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050 ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.
Keywords: supernova, neutron stars, gravitational waves
Published in RUNG: 12.10.2018; Views: 3255; Downloads: 0
This document has many files! More...

7.
8.
Search done in 0.04 sec.
Back to top