Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


141 - 150 / 405
Na začetekNa prejšnjo stran11121314151617181920Na naslednjo stranNa konec
141.
Multi-messenger studies with the Pierre Auger Observatory
Lukas Zehrer, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Marko Zavrtanik, Danilo Zavrtanik, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Over the past decade the multi-messenger astrophysics has emerged as a distinct discipline, providing unique insights into the properties of high-energy phenomena in the Universe. The Pierre Auger Observatory, located in Malargüe, Argentina, is the world’s largest cosmic ray detector sensitive to photons, neutrinos, and hadrons at ultra-high energies. Using its data, stringent limits on photon and neutrino fluxes at EeV energies have been obtained. The collaboration uses the excellent angular resolution and the neutrino identification capabilities of the Observatory for follow-up studies of events detected in gravitational waves or other messengers, through cooperation with global multi-messenger networks. We present a science motivation together with an overview of the multi-messenger capabilities and results of the Pierre Auger Observatory.
Ključne besede: high-energy cosmic phenomena, multi-messenger astrophysical studies, cosmic rays, gamma-rays, neutrinos, Pierre Auger Observatory
Objavljeno v RUNG: 06.05.2022; Ogledov: 1559; Prenosov: 0
Gradivo ima več datotek! Več...

142.
143.
144.
Application of machine learning techniques for cosmic ray event classification and implementation of a real-time ultra-high energy photon search with the surface detector of the Pierre Auger Observatory : dissertation
Lukas Zehrer, 2021, doktorska disertacija

Opis: Despite their discovery already more than a century ago, Cosmic Rays (CRs) still did not divulge all their properties yet. Theories about the origin of ultra-high energy (UHE, > 10^18 eV) CRs predict accompanying primary photons. The existence of UHE photons can be investigated with the world’s largest ground-based experiment for detection of CR-induced extensive air showers (EAS), the Pierre Auger Observatory, which offers an unprecedented exposure to rare UHE cosmic particles. The discovery of photons in the UHE regime would open a new observational window to the Universe, improve our understanding of the origin of CRs, and potentially uncloak new physics beyond the standard model. The novelty of the presented work is the development of a "real-time" photon candidate event stream to a global network of observatories, the Astrophysical Multimessenger Observatory Network (AMON). The stream classifies CR events observed by the Auger surface detector (SD) array as regards their probability to be photon nominees, by feeding to advanced machine learning (ML) methods observational air shower parameters of individual CR events combined in a multivariate analysis (MVA). The described straightforward classification procedure further increases the Pierre Auger Observatory’s endeavour to contribute to the global effort of multi-messenger (MM) studies of the highest energy astrophysical phenomena, by supplying AMON partner observatories the possibility to follow-up detected UHE events, live or in their archival data.
Ključne besede: astroparticle physics, ultra-high energy cosmic rays, ultra-high energy photons, extensive air showers, Pierre Auger Observatory, multi-messenger, AMON, machine learning, multivariate analysis, dissertations
Objavljeno v RUNG: 27.10.2021; Ogledov: 2891; Prenosov: 150
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

145.
FR-0 jetted active galaxies : extending the zoo of candidate sites for UHECR acceleration
Lukas Merten, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Serguei Vorobiov, Fabrizio Tavecchio, Giacomo Bonnoli, Jon Paul Lundquist, Chiara Righi, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Fanaroff-Riley (FR) 0 radio galaxies form a low-luminosity extension to the well-established ultra-high-energy cosmic-ray (UHECR) candidate accelerators FR-1 and FR-2 galaxies. Their much higher number density — up to a factor five times more numerous than FR-1 with z ≤ 0.05 — makes them good candidate sources for an isotropic contribution to the observed UHECR flux. Here, the acceleration and survival of UHECR in prevailing conditions of the FR-0 environment are discussed. First, an average spectral energy distribution (SED) is compiled based on the FR0CAT. These photon fields, composed of a jet and a host galaxy component, form a minimal target photon field for the UHECR, which will suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. The two most promising acceleration scenarios based on Fermi-I order and gradual shear acceleration are discussed as well as different escape scenarios. When an efficient acceleration mechanism precedes gradual shear acceleration, e.g., Fermi-I orothers, FR-0 galaxies are likely UHECR accelerators. Gradual shear acceleration requires a jet Lorentz factor of Gamma>1.6, to be faster than the corresponding escape. In less optimistic models, a contribution to the cosmic-ray flux between the knee and ankle is expected to be relatively independent of the realized turbulence and acceleration.
Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, cosmic ray acceleration, cosmic ray energy losses
Objavljeno v RUNG: 16.08.2021; Ogledov: 2012; Prenosov: 3
.pdf Celotno besedilo (1,13 MB)

146.
Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to FR-1s). In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data.
Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos
Objavljeno v RUNG: 16.08.2021; Ogledov: 1985; Prenosov: 3
.pdf Celotno besedilo (2,04 MB)

147.
148.
149.
150.
Iskanje izvedeno v 0.08 sek.
Na vrh