Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Tuning the activity of iron phosphide electrocatalysts for sustainable energy conversion
Saim Emin, Takwa Chouki, Manel Machreki, 2023, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Opis: Electrocatalysis is a promising approach for the sustainable conversion of renewable energy sources, such as solar and wind power, into chemical energy that can be stored and used on demand. By harnessing renewable electricity to drive electrochemical reactions, we can produce fuels and chemicals in a way that is both clean and cost-effective. As we continue to develop new electrocatalytic materials and improve the efficiency of existing processes, the potential for electrocatalysis to transform our energy system will only continue to grow. We report the use of iron phosphide (Fe2P, FeP) in several electrocatalytic applications, such as reduction of nitrate ions (NO3), hydrogen and oxygen evolution studies. The electrochemical reduction of the nitrate ion (NO3), a widespread water pollutant, to valuable ammonia (NH3) is a promising approach to achieving green energy conservation. Particularly, FeP and Fe2P phases were successfully demonstrated as efficient catalysts for NH3 generation. Detection of the in-situ formed product using a bi-potentiostat was achieved by electrooxidation of NH3 to nitrogen (N2) on a Pt electrode. The Fe2P catalyst exhibits the highest Faradaic efficiency (96%) for NH3 generation with a yield (0.25 mmol h−1 cm-−2 or 2.10 mg h−1 cm−2) at −0.55 V vs. reversible hydrogen electrode (RHE). To get relevant information about the reaction mechanisms and the fundamental origins behind the better performance of Fe2P, density functional theory (DFT) calculations were performed.
Ključne besede: Fe2P, FeP, electrocatalysis, NH3 reduction, counter electrode
Objavljeno v RUNG: 04.12.2023; Ogledov: 418; Prenosov: 4
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
Efficient Iron Phosphide Catalyst as a Counter Electrode in Dye-Sensitized Solar Cells : article
Abdullah Yildiz, Takwa Chouki, Aycan Atli, Moussab Harb, Sammy W Verbruggen, Rajeshreddy Ninakanti, Saim Emin, 2021, izvirni znanstveni članek

Opis: Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.
Ključne besede: Iron phosphide, catalyst, counter electrode, dye-sensitized solar cell, solvothermal synthesis
Objavljeno v RUNG: 06.02.2023; Ogledov: 913; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh