Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
3.
Development of Zinc Oxide-Multi-Walled Carbon Nanotube hybrid nanofluid for energy-efficient heat transfer application: A thermal lens study
Mohanachandran Nair Sindhu Swapna, 2021, izvirni znanstveni članek

Opis: This paper addresses the need for developing an energy-efficient hybrid nanofluid with zinc oxide–multi-walled carbon nanotube (ZnO-MWCNT) for overcoming the bottleneck of efficient heat transfer in thermal systems. The concentration-dependent thermal diffusivity modifications are analyzed using the highly sensitive mode mismatched thermal lens technique. The hybrid composite is prepared by the solid-state mixing and annealing of a pure multi-walled carbon nanotube (MWCNT) and zinc oxide (ZnO), synthesized by the solution combustion method. The composite formation is studied by structural, morphological, and optical characterization techniques. Among the three nanofluids ZnO, MWCNT, and ZnO-MWCNT, the composite exhibits a drastic enhancement in thermal diffusivity at a lower solid volume fraction of 0.047 mg/ml containing 0.009 mg/ml of MWCNT. All the nanofluids show an optimum concentration beyond which the thermal diffusivity decreases with the nanoparticle concentration. Thus, this study suggests the potential application of ZnO-MWCNT hybrid nanofluids in thermal system design to enhance internal combustion engines' efficiency during cold-start.
Ključne besede: Zinc Oxide, MWCNT, hybrid nanofluid, thermal lens, diffusivity, engine efficiency
Objavljeno v RUNG: 30.06.2022; Ogledov: 1208; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Soot effected sample entropy minimization in nanofluid for thermal system design : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vimal Raj, K. Satheesh Kumar, Sankaranarayana Iyer Sankararaman, 2020, izvirni znanstveni članek

Opis: The present work suggests a method of improving the thermal system efficiency, through entropy minimisation, and unveils the mechanism involved by analysing the molecular/particle dynamics in soot nanofluids (SNFs) using the time series, power spectrum, and wavelet analyses of the thermal lens signal (TLS). The photothermal energy deposition in the SNF lowers the refractive index due to the temperature rise. It triggers the particle dynamics that are investigated by segmenting the TLS and analysing the refractive index, phase portrait, fractal dimension (D), Hurst exponent (H), and sample entropy (SampEn). The wavelet analysis gives information about the relation between the entropy and the frequency components. When the phase portrait analysis reflects the complex dynamics from region 1 to 2 for all the samples, the SampEn analysis supports it. The decreasing value of D (from 1.59 of the base fluid to 1.55 and 1.52) and the SampEn (from 1.11 of the base fluid to 0.385 and 0.699) with the incorporation of diesel and camphor soot, indicate its ability to lower the complexity, randomness, and entropy. The increase of SampEn with photothermal energy deposition suggests its relation to the thermodynamic entropy (S). The lowering of thermal diffusivity value of the base fluid from 1.4 × 10−7 m2/s to 1.1 × 10−7 and 0.5 × 10−7 m2 /s upon diesel and camphor soot incorporation suggests the heat-trapping and reduced molecular dynamics in heat dissipation.
Ključne besede: soot, entropy, thermal system, photothermal, time series, nanofluid, fractal
Objavljeno v RUNG: 30.06.2022; Ogledov: 1114; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh