Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


3431 - 3440 / 6048
First pagePrevious page340341342343344345346347348349Next pageLast page
3431.
Heparan Sulfate Affects Elastin Deposition in Fibroblasts Cultured from Donors of Different Ages
Giulia Annovi, Federica Boraldi, Pasquale Moscarelli, Deanna Guerra, Roberta Tiozzo, Bruna Parma, Pascal Sommer, Daniela Quaglino, 2012, original scientific article

Abstract: Heparan sulfate (HS), due to its presence on the cell surface and in the extracellular milieu and its ability to modulate cell signaling, has a fundamental role in both physiological and pathological conditions. For decades we have demonstrated the occurrence of interactions between glycosaminoglycans (GAGs) and elastic fibers. In particular, we have recently shown that HS is present inside elastic fibers and plays a role in the assembly and stability of elastin coacervates. Elastin represents, within the extracellular matrix, the component most severely affected during aging, and changes in the synthesis and posttranslational modifications of HS have been described, possibly influencing cellular behavior and protein interactions. Thus, the present study has investigated, in two different in vitro experimental models, the role of HS on elastin deposition and assembly. Results demonstrate that: (1) Biological effects of HS are partly dependent on the physicochemical characteristics of the GAGs; (2) HS does not affect attachment, viability, and growth of human dermal fibroblasts; (3) HS does not modify elastin gene expression nor elastin synthesis, but favors a-elastin aggregation and, independently from the age of donors, elastin assembly; (4) HS significantly increases the expression of fibulin 5, and these effects are especially evident in fibroblasts isolated from aging donors. These data provide a better understanding of the biological role of HS and offer new perspectives regarding the possibility of restoring and/or preserving the elastic component with aging.
Keywords: Heparan sulfate, Elastin, Fibroblasts
Published in RUNG: 23.08.2019; Views: 2977; Downloads: 0
This document has many files! More...

3432.
Comparison of ex vivo and in vitro human fibroblast ageing models.
Federica Boraldi, Giulia Annovi, Roberta Tiozzo, Pascal Sommer, Daniela Quaglino, 2010, original scientific article

Abstract: Several studies have analyzed modulation of gene expression during physiological ageing with interesting, but often contradictory results, depending on the model used. In the present report we compare age-related metabolic and synthetic parameters in human dermal fibroblasts (HDF) isolated from young and old subjects (ex vivo ageing model) and cultured from early up to late cumulative population doublings (CPD) (in vitro ageing model) in order to distinguish changes induced in vivo by the aged environment and maintained in vitro, from those associated with cell senescence and progressive CPD. Results demonstrate that fibroblasts from aged donors, already at early CPD, exhibit an impaired redox balance, highlighting the importance of this parameter during ageing, even in the presence of standard environmental conditions, which are considered optimal for cell growth. By contrast, several proteins, as those related to heat shock response, or involved in endoplasmic reticulum and membrane trafficking, appeared differentially expressed only during in vitro ageing, suggesting that, at high CPD, the whole cell machinery becomes permanently altered. Finally, given the importance of the elastic component for a long-lasting connective tissue structural and functional compliance, this study focuses also on elastin and fibulin-5 synthesis and deposition, demonstrating a close relationship between fibulin-5 and ageing.
Keywords: Ageing Fibroblast Connective tissue Oxidative stress Protein expression Elastin
Published in RUNG: 23.08.2019; Views: 3237; Downloads: 0
This document has many files! More...

3433.
3434.
Fibroblast protein profile analysis highlights the role of oxidative stress and vitamin K recycling in the pathogenesis of pseudoxanthoma elasticum.
Federica Boraldi, Giulia Annovi, Deanna Guerra, Paolinelli Devincenzi Chiara, Garcia Fernandez Maria Immaculada, Fulvio Panico, Giorgio De Santis, Roberta Tiozzo, Ivonne Pasquali Ronchetti, Daniela Quaglino, 2009, original scientific article

Abstract: Pseudoxanthoma elasticum (PXE) is a genetic disorder associated to mutations in the ABCC6 gene; however, the pathogenetic mechanisms leading to elastic fibre calcifications and to clinical manifestations are still unknown. Dermal fibroblasts, directly involved in the production of the extracellular milieu, have been isolated from healthy subjects and from patients affected by PXE, cultured in vitro and characterized for their ability to produce reactive oxygen species, for structural and functional properties of their cell membranes, for changes in their protein profile. Data demonstrate that oxidative stress has profound and endurable consequences on PXE fibroblast phenotype being responsible for: reduced levels of global DNA methylation, increased amount of carbonylated proteins and of lipid peroxidation products, altered structural properties of cell membranes, modified protein expression. Data shed new light on the pathogenetic pathways in PXE, by identifying a network of proteins affecting elastic fibre calcification through inefficient vitamin K recycling, and highlight the role of differentially expressed proteins as targets for validating the efficacy of future therapeutic strategies aiming to delay and/or revert the pathologic phenotype of PXE fibroblasts. Moreover, data open new perspectives for investigating PXE-like phenotypes in the absence of ABCC6 mutations.
Keywords: Ectopic calcification / Elastin / Fibroblast proteome / MRP6 / PXE
Published in RUNG: 23.08.2019; Views: 3409; Downloads: 0
This document has many files! More...

3435.
3436.
Connective tissue and diseases: from morphology to proteomics towards the development of new therapeutic appproach
Daniela Quaglino, Federica Boraldi, Giulia Annovi, Deanna Guerra, Ivonne Pasquali Ronchetti, 2009, review article

Abstract: Connective tissue consists of cells separated by the extracellular matrix, whose composition and amount vary according to age, to functional requirements, and to the presence of pathologic conditions. Within this non-random macromolecular assembly, collagens, elastin, proteoglycans and structural glycoproteins are mutually interdependent and modifications of one component, by extrinsic (environmental) and/or intrinsic (systemic, genetic, age-related) factors, may have consequences on the tissue as a whole. Since decades, different microscopical techniques have been applied mainly for diagnostic purposes and for detailed descriptions of changes occurring in cells and in matrix components. More recently, in order to dissect the molecular complexity of the matrix network, to analyse the interactions between cells and matrix and to look for modulators of cell phenotype, histomorphologic investigations have been implemented with proteomic studies that allow to identify possible diagnostic markers, and to better understand patho-mechanisms enabling the design of novel therapeutic strategies. Therefore, the progressively expanding, although incomplete, knowledge on connective tissue biology, sheds new light on the pathogenesis of diseases affecting single molecules (i.e. collagenopathies, mucopolysaccharidoses, elastinopathies) and discloses the importance of matrix components as fundamental regulators of cell phenotype, in relation, for instance, to the aging process and/or to cancer development and progression. Few examples will be presented demonstrating the promises of proteomics as a technique leading to the discovery of new therapies and possibly to the development of individualized treatments for a better patient care.
Keywords: pathology, proteomics, fibrosis, rheumatology, cancer
Published in RUNG: 23.08.2019; Views: 2937; Downloads: 0
This document has many files! More...

3437.
Enhancement of Charge Transport in Polythiophene Semiconducting Polymer by Blending with Graphene Nanoparticles
Egon Pavlica, Gvido Bratina, 2019, original scientific article

Abstract: This paper describes a study on the charge transport in a composite of liquid‐exfoliated graphene nanoparticles (GNPs) and a polythiophene semiconducting polymer. While the former component is highly conducting, although it consists of isolated nanostructures, the latter offers an efficient charge transport path between the individual GNPs within the film, overall yielding enhanced charge transport properties of the resulting bi‐component system. The electrical characteristics of the composite layers were investigated by means of measurements of time‐of‐flight photoconductivity and transconductance in field‐effect transistors. In order to analyze both phenomena separately, charge density and charge mobility contributions to the conductivity were singled out. With the increasing GNP concentration, the charge mobility was found to increase, thereby reducing the time spent by the carriers on the polymer chains. In addition, for GNP loading above 0.2 % (wt.), an increase of free charge density was observed that highlights an additional key role played by doping. Variable‐range hopping model of a mixed two‐ and three‐dimensional transport is explained using temperature dependence of mobility and free charge density. The temperature variation of free charge density was related to the electron transfer from polythiophene to GNP, with an energy barrier of 24 meV.
Keywords: grafen, polimeri, transport električnega naboja, časovno odvisna fotoprevodnost
Published in RUNG: 23.08.2019; Views: 2901; Downloads: 0
This document has many files! More...

3438.
3439.
New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach.
Davide Malagoli, Federica Boraldi, Giulia Annovi, Daniela Quaglino, Enzo Ottaviani, 2009, original scientific article

Abstract: Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.
Keywords: Autophagic cell death, Fat body, IDGF, IPLB-LdFB, Proteomics
Published in RUNG: 23.08.2019; Views: 2957; Downloads: 0
This document has many files! More...

3440.
A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing.
Manuela Malatesta, Federica Boraldi, Giulia Annovi, Beatrice Baldelli, Serafina Battistelli, Marco Baggiogera, Daniela Quaglino, 2008, original scientific article

Abstract: Liver represents a suitable model for monitoring the effects of a diet, due to its key role in controlling the whole metabolism. Although no direct evidence has been reported so far that genetically modified (GM) food may affect health, previous studies on hepatocytes from young female mice fed on GM soybean demonstrated nuclear modifications involving transcription and splicing pathways. In this study, the effects of this diet were studied on liver of old female mice in order to elucidate possible interference with ageing. The morpho-functional characteristics of the liver of 24-month-old mice, fed from weaning on control or GM soybean, were investigated by combining a proteomic approach with ultrastructural, morphometrical and immunoelectron microscopical analyses. Several proteins belonging to hepatocyte metabolism, stress response, calcium signalling and mitochondria were differentially expressed in GM-fed mice, indicating a more marked expression of senescence markers in comparison to controls. Moreover, hepatocytes of GM-fed mice showed mitochondrial and nuclear modifications indicative of reduced metabolic rate. This study demonstrates that GM soybean intake can influence some liver features during ageing and, although the mechanisms remain unknown, underlines the importance to investigate the long-term consequences of GM-diets and the potential synergistic effects with ageing, xenobiotics and/or stress conditions.
Keywords: Genetically modified soybean, liver, mitochondria
Published in RUNG: 23.08.2019; Views: 3273; Downloads: 0
This document has many files! More...

Search done in 0.47 sec.
Back to top