Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


3441 - 3450 / 6105
First pagePrevious page341342343344345346347348349350Next pageLast page
3441.
Še o slovenski književni krajini
Barbara Pregelj, 2019, professional article

Abstract: Avtorica pregleduje slovensko književno krajino in jo primerja s špansko, baskovsko, katalonsko in galicijsko, pri čemer še posebej izpostavi pomen manjših slovenskih založb.
Keywords: književna krajina, založništvo, knjižni trg, majhne založbe, primerjave
Published in RUNG: 07.10.2019; Views: 3308; Downloads: 0
This document has many files! More...

3442.
Temperature responses of soil ammonia-oxidising archaea depend on pH
Cecile Gubry-Rangin, Breda Novotnik, Ines Mandić-Mulec, Graeme W. Nicol, James I. Prosser, 2017, original scientific article

Keywords: Temperature, pH, Ammonia-oxidising archaea Soil
Published in RUNG: 07.10.2019; Views: 3520; Downloads: 0
This document has many files! More...

3443.
3444.
3445.
Uranium isotope fractionation during adsorption, (co) precipitation, and biotic reduction
Duc Huy Dang, Breda Novotnik, Wei Wang, Bastian R. Georg, Douglas R. Evans, 2016, original scientific article

Abstract: Uranium contamination of surface environments is a problem associated with both U-ore extraction/processing and situations in which groundwater comes into contact with geological formations high in uranium. Apart from the environmental concerns about U contamination, its accumulation and isotope composition have been used in marine sediments as a paleoproxy of the Earth’s oxygenation history. Understanding U isotope geochemistry is then essential either to develop sustainable remediation procedures as well as for use in paleotracer applications. We report on parameters controlling U immobilization and U isotope fractionation by adsorption onto Mn/Fe oxides, precipitation with phosphate, and biotic reduction. The light U isotope (235U) is preferentially adsorbed on Mn/Fe oxides in an oxic system. When adsorbed onto Mn/Fe oxides, dissolved organic carbon and carbonate are the most efficient ligands limiting U binding resulting in slight differences in U isotope composition (δ238U = 0.22 ± 0.06‰) compared to the DOC/DIC-free configuration (δ238U = 0.39 ± 0.04‰). Uranium precipitation with phosphate does not induce isotope fractionation. In contrast, during U biotic reduction, the heavy U isotope (238U) is accumulated in reduced species (δ238U up to −1‰). The different trends of U isotope fractionation in oxic and anoxic environments makes its isotope composition a useful tracer for both environmental and paleogeochemical applications.
Keywords: Uranium, fractionation, biotic, abiotic, oxides
Published in RUNG: 04.10.2019; Views: 2966; Downloads: 0
This document has many files! More...

3446.
Near-Ground Profile of Bora Wind Speed at Razdrto, Slovenia
Marija Bervida, Samo Stanič, Klemen Bergant, Benedikt Strajnar, 2019, original scientific article

Abstract: Southwest Slovenia is a region well-known for frequent episodes of strong and gusty Bora wind, which may damage structures, affect traffic, and poses threats to human safety in general. With the increased availability of computational power, the interest in high resolution modeling of Bora on local scales is growing. To model it adequately, the flow characteristics of Bora should be experimentally investigated and parameterized. This study presents the analysis of wind speed vertical profiles at Razdrto, Slovenia, a location strongly exposed to Bora during six Bora episodes of different duration, appearing between April 2010 and May 2011. The empirical power law and the logarithmic law for Bora wind, commonly used for the description of neutrally stratified atmosphere, were evaluated for 10-min averaged wind speed data measured at four different heights. Power law and logarithmic law wind speed profiles, which are commonly used in high resolution computational models, were found to approximate well the measured data. The obtained power law coefficient and logarithmic law parameters, which are for modeling purposes commonly taken to be constant for a specific site, were found to vary significantly between different Bora episodes, most notably due to different wind direction over complex terrain. To increase modeling precision, the effects of local topography on wind profile parameters needs to be experimentally assessed and implemented.
Keywords: Bora wind, logarithmic law, power law, roughness length, wind profile
Published in RUNG: 04.10.2019; Views: 3566; Downloads: 109
.pdf Full text (5,90 MB)

3447.
3448.
3449.
3450.
Search done in 0.44 sec.
Back to top