Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


251 - 260 / 6071
First pagePrevious page22232425262728293031Next pageLast page
251.
252.
253.
254.
Pogled v svet ptic : literarno slikarski dogodek v Galerija Zveze kulturnih društev Kranj, 13. 9. 2023 - 27. 9. 2023
2023, exhibition

Published in RUNG: 15.01.2024; Views: 438; Downloads: 0
This document has many files! More...

255.
Jesenski motivi : razstava likovnih del, Dom Krajevne skupnosti Primskovo, 18. 10. 2023 - 18. 11. 2023
2023, exhibition

Published in RUNG: 15.01.2024; Views: 431; Downloads: 0
This document has many files! More...

256.
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins : the case of the lower Drâa Valley, Morocco
Adolfo Gonzalez-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andrés Alastuey, Konrad Kandler, Martina Klose, 2023, original scientific article

Abstract: The effects of desert dust upon climate and ecosystems depend strongly on its particle size and size-resolved mineralogical composition. However, there is very limited quantitative knowledge on the particle size and composition of the parent sediments along with their variability within dust-source regions, particularly in dust emission hotspots. The lower Drâa Valley, an inland drainage basin and dust hotspot region located in the Moroccan Sahara, was chosen for a comprehensive analysis of sediment particle size and mineralogy. Different sediment type samples (n= 42) were collected, including paleo-sediments, paved surfaces, crusts, and dunes, and analysed for particle-size distribution (minimally and fully dispersed samples) and mineralogy. Furthermore, Fe sequential wet extraction was carried out to characterise the modes of occurrence of Fe, including Fe in Fe (oxyhydr)oxides, mainly from goethite and hematite, which are key to dust radiative effects; the poorly crystalline pool of Fe (readily exchangeable ionic Fe and Fe in nano-Fe oxides), relevant to dust impacts upon ocean biogeochemistry; and structural Fe. Results yield a conceptual model where both particle size and mineralogy are segregated by transport and deposition of sediments during runoff of water across the basin and by the precipitation of salts, which causes a sedimentary fractionation. The proportion of coarser particles enriched in quartz is higher in the highlands, while that of finer particles rich in clay, carbonates, and Fe oxides is higher in the lowland dust emission hotspots. There, when water ponds and evaporates, secondary carbonates and salts precipitate, and the clays are enriched in readily exchangeable ionic Fe, due to sorption of dissolved Fe by illite. The results differ from currently available mineralogical atlases and highlight the need for observationally constrained global high-resolution mineralogical data for mineral-speciated dust modelling. The dataset obtained represents an important resource for future evaluation of surface mineralogy retrievals from spaceborne spectroscopy.
Keywords: mineral dust, aerosols, geology
Published in RUNG: 12.01.2024; Views: 691; Downloads: 3
.pdf Full text (7,63 MB)
This document has many files! More...

257.
Chemistry of the iron-chlorine thermochemical cycle for hydrogen production utilizing industrial waste heat
Matjaž Valant, Uroš Luin, 2024, original scientific article

Abstract: This research presents an inventive thermochemical cycle that utilizes a reaction between iron and HCl acid for hydrogen production. The reaction occurs spontaneously at room temperature, yielding hydrogen and a FeCl2 solution as a by-product. Exploring the thermal decomposition of the FeCl2 by-product revealed that, at conditions suitable for utilization of low-temperature industrial waste heat (250 °C), chlorine gas formation can be circumvented. Instead, the resulting by-product is HCl, which is readily soluble in water, facilitating direct reuse in subsequent cycles. The utilization of low-temperature industrial heat not only optimizes resource utilization and reduces operational costs but also aligns with environmentally sustainable production processes. From the kinetic studies the activation energy was calculated to be 45 kJ/mol and kinetics curves were constructed. They showed significant kinetics at room temperature and above but rapid decrease towards lower temperatures. This is important to consider during real-scale technology optimization. The theoretical overall energy efficiency of the cycle, with 100% and 70% heat recuperation, was calculated at 68.8% and 44.8%, respectively. In practical implementation, considering the efficiency of DRI iron reduction technology and free waste heat utilization, the cycle achieved a 41.7% efficiency. Beyond its energy storage capabilities, the Iron-chlorine cycle addresses safety concerns associated with large-scale hydrogen storage, eliminating self-discharge, reducing land usage, and employing cost-effective storage materials. This technology not only facilitates seasonal energy storage but also establishes solid-state energy reserves, making it suitable for balancing grid demands during winter months using excess renewable energy accumulated in the summer.
Keywords: chemical cycles, hydrogen production, thermal decomposition, reaction kinetics, iron, chlorine
Published in RUNG: 12.01.2024; Views: 640; Downloads: 6
.pdf Full text (3,80 MB)
This document has many files! More...

258.
Spin-induced offset stream self-crossing shocks in tidal disruption events
Taj Jankovič, Clément Bonnerot, Andreja Gomboc, 2024, original scientific article

Keywords: numerical methods, black hole physics, hydrodynamics, relativistic processes
Published in RUNG: 11.01.2024; Views: 637; Downloads: 8
.pdf Full text (3,69 MB)
This document has many files! More...

259.
260.
Zastor je padel, tiskarski stroj se je ustavil
Drago Papler, 2022, preface, editorial, afterword

Keywords: energetika, ekologija, gospodarstvo, založništvo, revije
Published in RUNG: 11.01.2024; Views: 507; Downloads: 0
This document has many files! More...

Search done in 0.44 sec.
Back to top