Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


3421 - 3430 / 6006
First pagePrevious page339340341342343344345346347348Next pageLast page
3421.
Методичні рекомендації до лабораторного практикуму з курсу «Радикальні реакції в клітині»
Ольга Кущ, Вікторія Одарюк, Ганна Степаненко, Олена Душенко, 2017, other educational material

Abstract: Посібник містить методичні вказівки для виконання лабораторних робіт з курсу «Радикальні реакції у клітині». Призначено для аудиторної та самостійної роботи студентів.
Keywords: радикальні реакції, методичні рекомендації
Published in RUNG: 30.07.2019; Views: 1593; Downloads: 0
This document has many files! More...

3422.
3423.
3424.
Multiendomorphisms as a tool to construct new hyperrings
Sanja Jančić-Rašović, Irina Elena Cristea, 2015, published scientific conference contribution abstract

Keywords: hyperring, multiendomorphism
Published in RUNG: 25.07.2019; Views: 2852; Downloads: 0
This document has many files! More...

3425.
3426.
Manjšinska literatura in literatura obmejnega območja EDUKA2
Ana Toroš, other performed works

Abstract: Vodenje projektne delovne skupine EDUKA2 DS 3.1.5. - skupne učne enote o manjšinski literaturi ter literaturi obmejnega območja
Keywords: EDUKA2, Trst, Gorica, Videm, Istra, literatura, didaktika
Published in RUNG: 23.07.2019; Views: 2852; Downloads: 0
This document has many files! More...

3427.
Breathomics and its Application for Disease Diagnosis: A Review of Analytical Techniques and Approaches
David J Beale, Oliver A H Jones, Avinash V Karpe, Ding Y Oh, Iain R. White, Konstantinos A Kouremenos, Enzo A Palombo, 2018, independent scientific component part or a chapter in a monograph

Abstract: The application of metabolomics to an ever-greater variety of sample types is a key focus of systems biology research. Recently, there has been a strong focus on applying these approaches toward the rapid analysis of metabolites found in non-invasively acquired samples, such as exhaled breath (also known as ‘breathomics’). The sampling process involved in collecting exhaled breath is nonintrusive and comparatively low-cost. It uses a series of globally approved methods and provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of breath is a rapidly growing field that has proven effective in detecting and diagnosing the early stages of numerous diseases and infections. This review discusses the various collection and analysis methods currently applied in breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis for possible future scientific directions.
Keywords: Metabolomics, breath research, VOCs, breathomics
Published in RUNG: 22.07.2019; Views: 3182; Downloads: 0
This document has many files! More...

3428.
Capturing and Storing Exhaled Breath for Offline Analysis
Iain R. White, Stephen J Fowler, 2019, independent scientific component part or a chapter in a monograph

Abstract: In this chapter we will summarize and discuss methods for the capture and storage of exhaled breath, prior to offline (and indirect online) analysis. We will detail and compare methods currently in use, including their applications, key strengths, and limitations. In synthesizing the best features of each technique, we will propose an ideal standardized breath sampling solution, and give a personal vision on the next steps to be taken in this exciting area of breath research.
Keywords: Breath analysis, Breath sampling, Offline analysis, Thermal desorption, Gas chromatography-mass spectrometry
Published in RUNG: 22.07.2019; Views: 3404; Downloads: 0
This document has many files! More...

3429.
The effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts in primary cell culture.
Boraldi Federica, Annovi Giulia, Paolinelli Devincenzi Chiara, Tiozzo Roberta, Quaglino Daniela, 2008, original scientific article

Abstract: The effect of serum deprivation on proliferating cells is well known, in contrast its role on primary cell cultures, at confluence, has not been deeply investigated. Therefore, in order to explore the response of quiescent cells to serum deprivation, ubiquitous mesenchymal cells, as normal human dermal fibroblasts, were grown, for 48 h after confluence, in the presence or absence of 10% FBS. Fibroblast behaviour (i.e. cell morphology, cell viability, ROS production and elastin synthesis) was evaluated morphologically and biochemically. Moreover, the protein profile was investigated by 2-DE and differentially expressed proteins were identified by MS. Serum withdrawal caused cell shrinkage but did not significantly modify the total cell number. ROS production, as evaluated by the dihydroethidium (DH2) probe, was increased after serum deprivation, whereas elastin synthesis, measured by a colorimetric method, was markedly reduced in the absence of serum. By proteome analysis, 41 proteins appeared to significantly change their expression, the great majority of protein changes were related to the cytoskeleton, the stress response and the glycolytic pathway. Data indicate that human dermal fibroblasts in primary cell culture can adapt themselves to environmental changes, without significantly altering cell viability, at least after a few days of treatment, even though serum withdrawal represents a stress condition capable to increase ROS production, to influence cell metabolism and to interfere with cell behaviour, favouring the expression of several age-related features.
Keywords: Dermal fibroblasts / Primary cell culture / ROS production / Serum withdrawal
Published in RUNG: 22.07.2019; Views: 3347; Downloads: 0
This document has many files! More...

3430.
Hypoxia influences the cellular cross-talk of human dermal fibroblasts. A proteomic approach.
Boraldi Federica, Annovi Giulia, Carraro Fabio, Naldini Antonella, Tiozzo Roberta, Sommer Pascal, Quaglino Daniela, 2007, original scientific article

Abstract: The ability of cells to respond to changes in oxygen availability is critical for many physiological and pathological processes (i.e. development, aging, wound healing, hypertension, cancer). Changes in the protein profile of normal human dermal fibroblasts were investigated in vitro after 96 h in 5% CO2 and 21% O2 (pO2=140 mm Hg) or 2% O2 (pO2=14 mm Hg), these parameters representing a mild chronic hypoxic exposure which fibroblasts may undergo in vivo. The proliferation rate and the protein content were not significantly modified by hypoxia, whereas proteome analysis demonstrated changes in the expression of 56 proteins. Protein identification was performed by mass spectrometry. Data demonstrate that human fibroblasts respond to mild hypoxia increasing the expression of hypoxia inducible factor (HIF1a) and of the 150-kDa oxygen-regulated protein. Other differentially expressed proteins appeared to be related to stress response, transcriptional control, metabolism, cytoskeleton, matrix remodelling and angiogenesis. Furthermore, some of them, like galectin 1, 40S ribosomal protein SA, N-myc-downstream regulated gene-1 protein, that have been described in the literature as possible cancer markers, significantly changed their expression also in normal hypoxic fibroblasts. Interestingly, a bovine fetuin was also identified that appeared significantly less internalised by hypoxic fibroblasts. In conclusion, results indicate that human dermal fibroblasts respond to an in vitro mild chronic hypoxic exposure by modifying a number of multifunctional proteins. Furthermore, data highlight the importance of stromal cells in modulating the intercellular cross-talk occurring in physiological and in pathologic conditions.
Keywords: Human fibroblast, Primary cell culture, Hypoxia, Connective tissue, Proteome, 2D gel electrophoresis, Mass-spectrometry
Published in RUNG: 22.07.2019; Views: 3402; Downloads: 0
This document has many files! More...

Search done in 0.47 sec.
Back to top