Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Changes in black carbon emissions over Europe due to COVID-19 lockdowns
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, L. Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Jesús Yus-Díez, 2021, izvirni znanstveni članek

Opis: Abstract. Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.
Ključne besede: black carbon, covid-19, emissions, Europe
Objavljeno v RUNG: 13.05.2024; Ogledov: 114; Prenosov: 3
.pdf Celotno besedilo (11,03 MB)
Gradivo ima več datotek! Več...

2.
Gravity wave instability structures and turbulence from more than 1.5 years of OH[ast] airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, Samo Stanič, 2021, izvirni znanstveni članek

Opis: We analyzed 286 nights of data from the OH* airglow imager FAIM 3 (Fast Airglow IMager) acquired at Otlica Observatory, Slovenia, between 26 October 2017 and 6 June 2019. Measurements were performed with a spatial resolution of 24 m per pixel and a temporal resolution of 2.8 s. Multiple turbulence episodes were observed and the energy dissipation rate in the upper mesosphere/lower thermosphere region was estimated from image sequences in 25 cases. Values range around 0.08 and 9.03 W/kg and would lead to an approximated localized maximum heating of 0.03–3.02 K per turbulence event.
Ključne besede: upper mesosphere, lower thermosphere, remote sensing, gravity waves, turbulence, Bora episodes
Objavljeno v RUNG: 25.10.2021; Ogledov: 1878; Prenosov: 0
Gradivo ima več datotek! Več...

3.
Orographic gravity waves in OH-airglow imaging systems
Sabine Wuest, Jonas Till, René Sedlak, Patrick Hannawald, Carsten Schmidt, Samo Stanič, Michael Bittner, 2020, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Atmospheric dynamics is strongly influenced by waves on different scales. Airflow over mountains can lead to all kinds of atmospheric waves, planetary and gravity waves as well as infrasound. Under certain circumstances these waves can propagate through the atmosphere and lead to a re- distribution of energy. In the case of gravity waves, a stably stratified atmosphere is a mandatory requirement for their generation and vertical propagation. Additionally, the vertical propagation depends on the horizontal wind field. In the Alpine and pre-Alpine region, we currently operate five OH-airglow imaging systems, which allow the investigation of orographic gravity waves. Depending on tropo-, strato- and mesospheric wind and temperature, it is checked which wavelengths can propagate into the fields of view of our instruments. This is done for a whole year in order to take into account annual and semi- annual cycles in wind and temperature. Concerning the generation of gravity waves, we put our focus on our OH-airglow imager (FAIM) deployed at Otlica (45.9°N, 13.9°E), Slovenia. Here, we also have additional measurements of an OH-airglow spectrometer (GRIPS). In case studies, we investigate whether strong wind events (Bora) lead to strong gravity waves activity or enhanced potential energy density.
Ključne besede: Orographic gravity waves, Bora, Otlica, Slovenia, OH-airglow imaging
Objavljeno v RUNG: 08.10.2020; Ogledov: 2538; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh