Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


151 - 160 / 290
First pagePrevious page12131415161718192021Next pageLast page
151.
On-orbit performance of the ISS-CREAM calorimeter
K. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution

Abstract: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment is designed to study the composition and energy spectra of cosmic-ray particles from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The ISS-CREAM payload employs a Silicon Charge Detector for charge measurements, Top and Bottom Counting Detector for electron-hadron separation and a low-energy trigger, a Boronated Scintillator Detector for additional electron-hadron separation, and a Calorimeter (CAL) for en-ergy measurements and a high-energy trigger. The CAL is constructed of 20 layers of tungsten plates interleaved with scintillating fiber ribbons read out by hybrid-photodiodes (HPDs) and densified carbon targets. Each CAL layer is made of 3.5 mm (1 X_0) thick tungsten plates alter-nating with fifty 0.5 mm thick and 1 cm wide scintillating fiber ribbons. Consecutive layers of fiber ribbons are installed orthogonal to each other. Energy deposition in the CAL determines the particle energy and provides tracking information to determine which segment(s) of the charge detectors to use for the charge measurement. Tracking for showers is accomplished by extrapolating each shower axis back to the charge detectors. The performance of the ISS-CREAM CAL during flight is presented.
Keywords: instrumentations, high energy cosmic rays, particle detectors
Published in RUNG: 08.02.2021; Views: 2305; Downloads: 0
This document has many files! More...

152.
ISS-CREAM flight operation
K. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution

Abstract: The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) is designed and built to measure the elemental energy spectra of cosmic-ray particles (1 ≤ Z ≤ 26) and electrons. It measures the energy of incident cosmic rays from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The Science Operations Center (SOC) at the University of Maryland has been operating the payload on the International Space Station (ISS) in coordination with the Payload Operations Integration Center (POIC) at NASA’s Marshall Space Flight Center. The SOC has been responsible for sending commands to and receiving data from the Science Flight Computer (SFC) on board ISS-CREAM. The ISS-CREAM data taking program interfaces with the POIC using the Telescience Resources Kit through the Software Toolkit for Ethernet Lab-Like Architecture developed by the Boeing Company. The command uplink and data downlink have been through the Track-ing and Data Relay Satellite System. We present the ISS-CREAM flight operations including ISS communications, SFC performance, etc.
Keywords: instrumentations, high energy cosmic rays, particle detectors
Published in RUNG: 08.02.2021; Views: 2250; Downloads: 0
This document has many files! More...

153.
On-orbit performance of the ISS-CREAM SCD
G. H. Choi, Y. Amarea, D. Angelaszek, N. Anthony, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution

Abstract: The Cosmic Ray Energetic And Mass for the International Space Station (ISS-CREAM) experiment is designed for precision measurements of energy spectra and elemental composition of cosmic rays. It was launched and installed on the ISS in August 2017. The Silicon Charge Detector (SCD), placed at the top of the ISS-CREAM payload, consists of 4 layers with a total of 10,752 silicon pixels which have 1.37 × 1.57 cm^2 size each. Each layer is arranged in such a fashion that its active detection area of 78 × 74 cm^2 is free of any dead area. The SCD 4-layer configuration was chosen to achieve the best precision in measuring the charge of cosmic rays from proton to iron nuclei with a charge resolution of 0.1 − 0.3e. We will present its on-orbit performance and operation status on the ISS since the launch.
Keywords: instrumentations, high energy cosmic rays, particle detectors
Published in RUNG: 08.02.2021; Views: 2237; Downloads: 0
This document has many files! More...

154.
Searching for cosmic-ray signals from decay of fermionic dark matter with CALET
Saptashwa Bhattacharyya, Holger Motz, Shoji Torii, Yoichi Asaoka, 2017, published scientific conference contribution

Keywords: dark matter, cosmic-rays, CALET
Published in RUNG: 08.02.2021; Views: 2004; Downloads: 0
This document has many files! More...

155.
Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates
Lukas Merten, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Serguei Vorobiov, Fabrizio Tavecchio, Giacomo Bonnoli, Jon Paul Lundquist, Chiara Righi, 2021, original scientific article

Abstract: Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-energy cosmic rays (UHECRs) with energies reaching up to eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work. In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region. This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks.
Keywords: acceleration of particles, nonthermal radiation mechanisms, jets, active galaxies, cosmic rays
Published in RUNG: 05.02.2021; Views: 2497; Downloads: 0
This document has many files! More...

156.
Search for large-scale anisotropy on arrival directions of ultra-high-energy cosmic rays observed with the telescope array experiment
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Motivated by the detection of a significant dipole structure in the arrival directions of ultra-high-energy cosmic rays above 8 EeV reported by the Pierre Auger Observatory (Auger), we search for a large-scale anisotropy using data collected with the surface detector array of the Telescope Array Experiment (TA). With 11 yr of TA data, a dipole structure in a projection of the R.A. is fitted with an amplitude of 3.3% ± 1.9% and a phase of 131° ± 33°. The corresponding 99% confidence-level upper limit on the amplitude is 7.3%. At the current level of statistics, the fitted result is compatible with both an isotropic distribution and the dipole structure reported by Auger.
Keywords: cosmic rays, ultra-high-energy cosmic radiation, cosmic ray sources, cosmic ray showers, cosmic ray detectors, cosmic ray astronomy, extragalactic astronomy
Published in RUNG: 05.02.2021; Views: 2308; Downloads: 0
This document has many files! More...

157.
Evidence for a supergalactic structure of magnetic deflection multiplets of ultra-high-energy cosmic rays
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Evidence for a large-scale supergalactic cosmic-ray multiplet (arrival directions correlated with energy) structure is reported for ultra-high-energy cosmic-ray (UHECR) energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector and updated to 10 years. Previous energy–position correlation studies have made assumptions regarding magnetic field shapes and strength, and UHECR composition. Here the assumption tested is that, because the supergalactic plane is a fit to the average matter density of the local large-scale structure, UHECR sources and intervening extragalactic magnetic fields are correlated with this plane. This supergalactic deflection hypothesis is tested by the entire field-of-view (FOV) behavior of the strength of intermediate-scale energy–angle correlations. These multiplets are measured in spherical cap section bins (wedges) of the FOV to account for coherent and random magnetic fields. The structure found is consistent with supergalactic deflection, the previously published energy spectrum anisotropy results of the TA (the Hotspot and Coldspot), and toy-model simulations of a supergalactic magnetic sheet. The seven year data posttrial significance of this supergalactic structure of multiplets appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be 4.2σ. The 10 years of data posttrial significance is 4.1σ. Furthermore, the starburst galaxy M82 is shown to be a possible source of the TA Hotspot, and an estimate of the supergalactic magnetic field using UHECR measurements is presented.
Keywords: extragalactic magnetic fields, ultra-high-energy cosmic radiation, cosmic rays, high energy astrophysics, astrophysical magnetism, cosmic ray astronomy, cosmic ray sources
Published in RUNG: 05.02.2021; Views: 2416; Downloads: 125
URL Link to full text
This document has many files! More...

158.
Measurement of the proton-air cross section with Telescope Array's Black Rock Mesa and Long Ridge fluorescence detectors, and surface array in hybrid mode
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Ultra high energy cosmic rays provide the highest known energy source in the universe to measure proton cross sections. Though conditions for collecting such data are less controlled than an accelerator environment, current generation cosmic ray observatories have large enough exposures to collect significant statistics for a reliable measurement for energies above what can be attained in the lab. Cosmic ray measurements of cross section use atmospheric calorimetry to measure depth of air shower maximum (Xmax), which is related to the primary particle’s energy and mass. The tail of the Xmax distribution is assumed to be dominated by showers generated by protons, allowing measurement of the inelastic proton-air cross section. In this work the proton-air inelastic cross section measurement, σ_inel_p−air, using data observed by Telescope Array’s Black Rock Mesa and Long Ridge fluorescence detectors and surface detector array in hybrid mode is presented. σ_inel_p−air is observed to be 520.1 ± 35.8 [Stat.] +25.0 −40 [Sys.] mb at √s = 73 TeV. The total proton-proton cross section is subsequently inferred from Glauber formalism and is found to be σ_tot_pp = 139.4 +23.4−21.3[Stat.] +15.0−24.0[Sys.] mb.
Keywords: cosmic rays, astroparticles, proton-air cross section
Published in RUNG: 04.02.2021; Views: 2274; Downloads: 0
This document has many files! More...

159.
Self consistent simulation of dark matter and background
Saptashwa Bhattacharyya, Holger Motz, Shoji Torii, Yoichi Asaoka, Yuko Okada, 2015, published scientific conference contribution

Keywords: dark matter, GALPROP, cosmic-rays
Published in RUNG: 04.02.2021; Views: 2006; Downloads: 0
This document has many files! More...

160.
An interpretation of the cosmic ray e + + e − spectrum from 10 GeV to 3 TeV measured by CALET on the ISS
Saptashwa Bhattacharyya, 2019, original scientific article

Keywords: CALET, cosmic rays, dark matter
Published in RUNG: 06.01.2021; Views: 1963; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top