Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 36
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
11.
12.
13.
Electronic properties of phases in the quasi-binary Bi[sub]2Se[sub]3-Bi[sub]2S[sub]3 system
Zipporah Rini Benher, Sandra Gardonio, Mattia Fanetti, Paolo Moras, Asish K. Kundu, Chiara Bigi, Matjaž Valant, 2021, izvirni znanstveni članek

Opis: We explored the properties of the quasi-binary Bi2Se3–Bi2S3 system over a wide compositional range. X-ray diffraction analysis demonstrates that rhombohedral crystals can be synthesized within the solid solution interval 0–22 mol% Bi2S3, while at 33 mol% Bi2S3 only orthorhombic crystals are obtained. Core level photoemission spectroscopy reveals the presence of Bi3+, Se2− and S2− species and the absence of metallic species, thus indicating that S incorporation into Bi2Se3 proceeds prevalently through the substitution of Se with S. Spin- and angle-resolved photoemission spectroscopy shows that topological surface states develop on the surfaces of the Bi2Se3−ySy (y ≤0.66) rhombohedral crystals, in close analogy with the prototypical case of Bi2Se3, while the orthorhombic crystals with higher S content turn out to be trivial semiconductors. Our results connect unambiguously the phase diagram and electronic properties of the Bi2Se3–Bi2S3 system.
Ključne besede: topological insulator, quasi-binary Bi2Se3-Bi2S3 system, electronic properties
Objavljeno v RUNG: 29.03.2021; Ogledov: 2117; Prenosov: 0
Gradivo ima več datotek! Več...

14.
Applications of Chitosan as Food Packaging Materials
Patricia Cazón, Manuel Vazquez, 2019, recenzija, prikaz knjige, kritika

Opis: The interest in biopolymers has increased due to the depletion of the fossil fuel reserve and the environmental impact caused by the accumulation of non-biodegradable plastic-based packaging materials. Many biopolymers have been developed from food waste products to reduce this waste and, at the same time, to obtain new food packaging materials. Chitosan is thus an alternative to synthetic polymers, and a raw material for new materials. To assess the suitability of a material as a food packaging material, it is necessary to study their mechanical and permeability properties. Mechanical properties allow to predict the behaviour of films during transportation, handling and storage of packaged foods. Barrier properties play a key role in maintaining the food product quality. Properties values depend on the type of chitosan used. Mechanical and barrier properties of pure chitosan films are suitable for food packaging and active packaging. These properties can be modified by combining chitosan with other components such as plasticizers, other polysaccharides, proteins and lipids. These combinations adapt the properties of the final polymer to the needs of the food to extend its useful life, while maintaining quality properties of the food and the biodegradability of the polymer. Chitosan displays antimicrobial activity against a wide range of foodborne filamentous fungi, yeast, and gram-negative and gram-positive bacteria. This antimicrobial property and film-forming capacity has made chitosan the reference polymer to develop active packaging with the ability to inhibit the growth of microorganisms and improve food safety. Regarding the optical properties, pure chitosan films in the visible range show high transmittance values, being optically transparent films. This is an important parameter related to the acceptability of the films by the consumer. In addition, chitosan-based films exhibit remarkable UV absorbance, which allows to protect food from lipid oxidations induced by UV radiation.
Ključne besede: Film, Mechanical properties, Barrier properties, Antimicrobial, UV protect, Active food packaging
Objavljeno v RUNG: 14.12.2020; Ogledov: 2487; Prenosov: 0
Gradivo ima več datotek! Več...

15.
Mechanical and barrier properties of chitosan combined with other components as food packaging film
Patricia Cazón, Manuel Vazquez, 2019, pregledni znanstveni članek

Opis: Chitosan is an alternative to synthetic polymers for food packaging. The mechanical and barrier properties of pure chitosan films are promising. Chitosan properties can be modified by combining chitosan with other components such as plasticizers, other polysaccharides, proteins and lipids. Here we review mechanical and barrier properties of composite films based on chitosan. The major points are: (1) compared with synthetic plastic films, an important limitation of chitosan-based films is their mechanical properties, especially their capacity to elongation; (2) chitosan is a polymer that allows an easy combination with other polysaccharides, plasticizers, proteins and lipids; (3) this allows to develop mixed components and modify the film properties according to the nature of the food to be packaged.
Ključne besede: Chitosan, Film, Mechanical properties, Barrier properties, Food packaging
Objavljeno v RUNG: 09.12.2020; Ogledov: 2404; Prenosov: 0
Gradivo ima več datotek! Več...

16.
Environmentally Friendly Films Combining Bacterial Cellulose, Chitosan, and Polyvinyl Alcohol: Effect of Water Activity on Barrier, Mechanical, and Optical Properties
Patricia Cazón, Manuel Vazquez, Gonzalo Velazquez, 2019, izvirni znanstveni članek

Opis: The interest in developing new materials intended for food packaging based on bacterial cellulose is growing in the recent years. Flexible and transparent films from bacterial cellulose-chitosan-polyvinyl alcohol have shown excellent UV-barrier properties. However, this composite material interacts with ambient moisture modifying its water activity due to its hydrophilic nature. In this work, an extensive study was carried out to evaluate the changes in the properties of these films as a function of water activity. Moisture adsorption isotherm were described by the GAB method. Results showed the plasticizing effect of water molecules increasing the water vapour permeability of the samples from 1.86·10-12 to 1.17·10-11 g/m·s·Pa, the percentage of elongation from 3.25 to 36.55% and the distance to burst from 0.64 to 5.12 mm. The increase of the water activity dropped the tensile strength values from 74.76 to 38.56 MPa, Young’s modulus values from 3133.46 to 30.71 MPa and burst strength to 703.87 g. The values of the UV-barrier were maintained at the wide range of water activity. Consequently, water molecules do not affect the UV-barrier properties of the films.
Ključne besede: GAB model, moisture adsorption isotherms, plasticization, bacterial cellulose, mechanical properties, UV-barrier properties, moisture content
Objavljeno v RUNG: 09.12.2020; Ogledov: 2421; Prenosov: 0
Gradivo ima več datotek! Več...

17.
Bacterial cellulose films: Evaluation of the water interaction
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2020, izvirni znanstveni članek

Opis: Bacterial cellulose is a biopolymer that is gaining attention due to its 3D structure, higher purity, porosity and surface area. However, this material can interact with water molecules from the surrounding environment, resulting in alterations of its properties. Hence, the purpose of this study was to analyze the modifications on the mechanical, water vapor permeability and optical properties of bacterial cellulose films as a function of the water activity. Results indicated that water acted as a plasticizer, mainly affecting mechanical and water vapor permeability properties. The moisture adsorption isotherms allowed predicting the moisture content of the bacterial cellulose films at several relative humidity conditions. Values for tensile strength and burst strength ranged from 15.50 to 22.28 MPa and from 145.03–338.10 g, respectively. The elongation and the distance to burst ranged from 1.36 to 3.71 % and from 0.39 to 1.86 mm, respectively. These values increased due to the plasticizing effect of the water molecules. Water vapor permeability values ranged from 1.35·10−12 to 3.13·10-11 g/ m s Pa, showing a significant increase up to 0.48 of water activity. Bacterial cellulose films showed excellent UV-barrier properties in the different water activities evaluated.
Ključne besede: GAB model, Moisture adsorption isotherms, Bacterial cellulose, Mechanical properties, UV-barrier properties
Objavljeno v RUNG: 09.12.2020; Ogledov: 2432; Prenosov: 0
Gradivo ima več datotek! Več...

18.
UV-protecting films based on bacterial cellulose, glycerol and polyvinyl alcohol: effect of water activity on barrier, mechanical and optical properties
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2020, izvirni znanstveni članek

Opis: Biodegradable films based on bacterial cellulose, glycerol and polyvinyl alcohol are a new alternative to develop food packaging with the capac- ity to retard or inhibit the effect of UV radiation. However, these compounds are sensitive to moisture. Therefore, the purpose of this study was to evaluate the modifications of the mechanical, water vapor permeability and optical properties of these composite films depending on their water activity. Results showed that water molecules acted as a plasticizer agent, modifying the mechanical, water vapor perme- ability and optical properties of the developed films. However, an overplastification process took place at higher activity water, resulting in a weakness of film structure and decreasing drastically the elongation. The transmittance in the UV–VIS light region decreased when the activity water increased. No significant variations were observed in color, trans- parency or opacity properties.
Ključne besede: GAB model, Moisture adsorption isotherms, Plasticization, Bacterial cellulose, Mechanical properties, UV-barrier properties
Objavljeno v RUNG: 09.12.2020; Ogledov: 2375; Prenosov: 90
.pdf Celotno besedilo (552,03 KB)

19.
Effects of a Mixed O/F Ligand in the Tavorite-Type LiVPO4O Structure
Sorour Semsari Parapari, Jean-Marcel Ateba Mba, Elena Tchernychova, Gregor Mali, Iztok Arčon, Gregor Kapun, Mehmet Ali Gülgün, Robert Dominko, 2020, izvirni znanstveni članek

Opis: We report the synthesis and detailed structural and chemical characterization including electrochemical properties of a lithium vanadium oxy/fluoro-phosphate material. To the best of our knowledge, we have for the first time synthesized a LiVPO4O-type phase with a mixed O/F ligand. In the synthesis procedure, the LiVPO4O precursor compound was fluorinated via LiF incorporation, with preservation of the LiVPO4O framework structure. The operating potential of the synthesized material is increased compared to that of the LiVPO4O precursor (4.12 V vs 3.95 V versus metallic lithium, respectively). The related increase in operating potential was assigned to the effect of the intermixing O/F ligand, which is attained via the successful fluorine incorporation into the LiVPO4O structure. A characterization of the investigated materials was performed using microscale-covering XRD, XANES, and NMR techniques as well as nanoscale spatially resolved imaging and analytical STEM techniques. The obtained oxy/fluoro-phosphate phase is isostructural to LiVPO4O; however, the presence of the mixed O/F ligand promoted a higher symmetry of vanadium octahedra. These variations of the vanadium local environment along with the observed inhomogeneous distribution of the incorporated fluorine gave rise to the minor local deviations in vanadium valence. Our results clearly emphasize the connection among the fluorine ligand incorporation, its local distribution, and the electrochemical properties of the material.
Ključne besede: LiVPO4O, XRD, SEM, V XANES, Tavorite-Type, electrochemical properties
Objavljeno v RUNG: 17.02.2020; Ogledov: 2849; Prenosov: 0
Gradivo ima več datotek! Več...

20.
Looking for a topological insulator in the tetradymite family
Zipporah Rini Benher, Sandra Gardonio, Mattia Fanetti, Polina M. Sheverdyaeva, Paolo Moras, Matjaž Valant, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Materials that are topological insulators (TI) manifest a novel state for their electrons. They possess topological surface states that are not destroyed by the presence of non-magnetic impurities on their surfaces. This unique property lies in the bulk band structure and it is typically found in narrow gap semiconductor with strong spin-orbit coupling. Bi2Se3 and Bi2Te3 belong to the class of compounds called tetradymites and are considered as the 3D-prototypical TI materials. However, these compounds are not usually insulators but have metallic bulk conductivity as a consequence of intrinsic defect doping: vacancies and anti-site defects. For these reasons, it is difficult to electrically gate these materials for the manipulation and control of charge carriers for realizing devices. This led to the search for other topological materials, which might have better insulating behavior in their bulk. Theoretical studies have pointed out that ternary variants of the Bi2Se3 and Bi2Te3, such as Bi2Te2Se, Bi2Te2S, Bi2Se2S Sb2Te2Se and Sb2Te2S, should be stable TIs and potentially offer a chemical way to control TI behavior, in particular by lowering native doping. Among the cited ternary compounds, Bi2Se2S should manifest a genuine topological spin-transport regime hosting an isolated Dirac cone with the Dirac point in the gap as well. However, it has been poorly studied from the TI experimental perspective. Therefore, to uncover the full potential of the predicted topological electronic properties of the Bi-Se-S system, in this presentation we will revisit the crystallographic and electronic structure of Bi2Se3-Bi2S3 solid solutions. The combined use of bulk and surface sensitive techniques such as X-ray diffraction (XRD), low energy electron diffraction (LEED), scanning electron microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray photoemission spectroscopy (XPS) was applied to analyze single crystal samples grown by us. The quality of the single crystals was suitable for rigorous measurement of the electronic properties by means of Angle Resolved Photoemission Spectroscopy. We unambiguously showed that within a certain solid solution range, the single crystals of Bi-Se-S have a rombohedral structure with the topological surface states as theoretically predicted.
Ključne besede: topological insulators, ternary tetradymite, electronic properties.
Objavljeno v RUNG: 19.12.2019; Ogledov: 3746; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.05 sek.
Na vrh