Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:RF sputtered boron carbide thin film for UVB and UVC shielding: A greener approach
Authors:ID Swapna, Mohanachandran Nair Sindhu, UNIVERSITY OF KERALA (Author), et al.
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:The paper reports the development of RF sputtered boron carbide coatings as refractory and UV-shielder for high-temperature goggles and spacecraft applications. The advancement in the design and fabrication of machinery and UV optics necessitates the development of low-cost, eco-friendly preparation of wear-resistant refractory coatings with strong absorption in the UV region. Boron carbide coatings have proven their potential as abrasives besides their electronic applications. In the present work, boron carbide coatings are prepared by RF sputtering technique using the target prepared by low-temperature hydrothermal synthesis using cotton as carbon precursor. The sample synthesized and the film prepared are subjected to structure, morphological, and optical characterizations. The X-ray diffraction, Fourier transform infrared, micro-Raman and X-ray photoelectron studies confirm the formation of boron-rich boron carbide with the thermal stability of 87% at 800 C, revealed through the thermogravimetric analysis. The Tauc plot analysis gives the bandgap energy of the boron carbide target and film as 2.66 eV and 2.70 eV, respectively. The UV–Vis spectroscopic study also reveals the potential of the sample and the film in blocking UVB and UVC. The CIE plot from the photoluminescence study suggests the sample to be a blue light emitter.
Keywords:Boron carbide, RF sputtering, uv shielding, thin films
Publication version:Version of Record
Year of publishing:2022
Number of pages:6734-6744
Numbering:4, 33
PID:20.500.12556/RUNG-7444 New window
COBISS.SI-ID:113433347 New window
DOI:10.1007/s10854-022-07850-5 New window
NUK URN:URN:SI:UNG:REP:ZNSZQQSM
Publication date in RUNG:30.06.2022
Views:2010
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of Materials Science: Materials in Electronics
ISSN:0957-4522

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:30.06.2022

Back