Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Phenomenology of organic aerosols light absorption in Europe based on in situ surface observations
Authors:ID Rovira, Jordi (Author)
ID Yus-Díez, Jesús (Author)
ID Močnik, Griša (Author), et al.
Files:.pdf EGU24-9842-print.pdf (439,68 KB)
MD5: DDB74F809E851786D7E32D230B98E9C1
 
URL https://meetingorganizer.copernicus.org/EGU24/EGU24-9842.html
 
Language:English
Work type:Unknown
Typology:1.12 - Published Scientific Conference Contribution Abstract
Organization:UNG - University of Nova Gorica
Abstract:Both chamber and field experiments have shown that a fraction of organic aerosols (OA), called brown carbon (BrC), can efficiently absorb UV-VIS radiation with important effects on radiation balance. However, the optical properties of BrC, and its climate effects, remain poorly understood because a variety of chemical compositions are involved and their fractions vary with source and formation process. We present a phenomenology of OA light absorption in Europe using Aethalometer (AE) data. AE data were used to calculate the black carbon (BC) and BrC contribution to the total measured absorption in the UV-VIS spectral range (babs,BC(l), babsBrC(l)). Fig. 1 shows the BrC absorption at 370 nm and shows that the BrC absorption was on average higher in urban than in rural sites. Figure 1. Map of BrC absorption in rural and urban sites. At 18 out of 41 sites, simultaneous ACSM (Aerosol Chemical Speciation Monitor) data were available allowing reporting the mass absorption cross-section (MAC), the imaginary refractive index (k), the k Angström Exponent (w) of OA particles and OA sources. We compared the experimental data the with Saleh’s classification, that groups BrC in four optical classes, namely very weakly (VW-BrC), weakly (W-BrC), moderately (M-BrC) and strongly (S-BrC) absorbing BrC. Preliminary results show that both MAC and k of POA sources were higher compared to SOA sources and that BBOA (biomass burning OA) followed by CCOA (coal combustion OA) and HOA (hydrocarbon-like OA) dominated the absorption by BrC.  Data reported indicate a relationship between w and k with higher w associated to less absorbing OA particles. With this work we provide a robust experimental framework that can be used to better constrain the climate effect of OA particles represented in climate models. In our results we found that most of the measured ambient OA particles present from W to M absorption properties. Variations in OA k and w depend on the relative contribution of POA compared to SOA as also reflected by the higher k observed in winter compared to summer. Our results also demonstrate a strong variation of OA optical properties in Europe thus further confirming the complexity of OA absorption properties. This work was supported by the FOCI Project (G.A. 101056783) and ARRS P1-0385. Action Cost COLOSSAL. We thank the COLOSSAL Team for providing OA sources and AE33 data. Chen et al (2022). Env. Int. 166, 107325. Nakao et al (2013). Atm. Env. 68, 273-277. Canagaratna et al (2015). Atmos. Chem. Phys. 15, 253-272. Saleh et al (2020). Curr. Pollution Rep. 6, 90–104.
Keywords:black carbon, brown carbon, aerosol absorption coefficient
Publication status:Published
Publication version:Version of Record
Year of publishing:2024
Number of pages:1 spletni vir
PID:20.500.12556/RUNG-8941 New window
COBISS.SI-ID:189289219 New window
UDC:502.3/.7
DOI:10.5194/egusphere-egu24-9842 New window
NUK URN:URN:SI:UNG:REP:4DFJKAO2
Publication date in RUNG:18.03.2024
Views:315
Downloads:2
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a monograph

Title:EGU General Assembly 2024 : Vienna, Austria & online, 14-19 April 2024
Place of publishing:Göttingen
Publisher:EGU - European Geosciences Union
Year of publishing:2024
COBISS.SI-ID:189198083 New window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back