Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Detection of gamma-ray sources and search for dark matter signals with Cherenkov Telescope Array surveys : dissertation
Avtorji:ID Vodeb, Veronika (Avtor)
ID Zaharijas, Gabrijela (Mentor) Več o mentorju... Novo okno
Datoteke:.pdf latex_thesis_Vodeb-Veronika.pdf (36,25 MB)
MD5: 296B016CEBF336E718BB798501C05DBC
 
Jezik:Angleški jezik
Vrsta gradiva:Doktorsko delo/naloga
Tipologija:2.08 - Doktorska disertacija
Organizacija:FPŠ - Fakulteta za podiplomski študij
Opis:Gamma rays serve as important messengers in modern astrophysics, offering insights into the most energetic processes in the cosmos. Advancements in gamma-ray astronomy, facilitated by international scientific collaboration, have expanded its reach and capabilities. The Fermi-Large Area Telescope (Fermi-LAT) has so far contributed immensely to our understanding of the gamma-ray sky at GeV energies, surveying numerous source classes. At the same time, ground-based observatories like H.E.S.S., MAGIC, VERITAS, HAWC, and LHASSO, enable the exploration of high-energy (HE) phenomena across various energy scales, reaching the PeV range. The collective data from Fermi-LAT and ground-based instruments provide a comprehensive picture of cosmic phenomena across diverse energy regimes. Efforts to catalog HE gamma-ray sources have resulted in the detection of several thousand sources at GeV, including Pulsar Wind Nebulae (PWNe), Supernova Remnants (SNRs), pulsars, blazars, and Gamma-Ray Bursts (GRBs), with the observational capability to study their spectral and spatial morphology enhancing our understanding of their origin and evolution. Looking ahead, the Cherenkov Telescope Array (CTA) represents the next frontier in ground-based gamma-ray astronomy. Operating at very high energies (VHE) between 20 GeV and 300 TeV, CTA's improved sensitivity, angular resolution, and expanded field of view (FoV) promise enhanced imaging of extended sources and performance of large-scale surveys. CTA's Key Science Projects (KSPs) include the Extragalactic (EGAL) survey, a survey of a quarter of the extragalactic sky, and the Galactic Plane Survey (GPS), a survey of the entire Galactic Plane (GP). The KSPs will receive dedicated observation time and careful planning to ensure the optimization of their scientific output. As CTA is currently entering the construction phase, simulations are being extensively employed to predict its response to various signals, playing a vital role in comprehending CTA's response and sensitivity to different signals. The derived predictions are paving the way for estimating the CTA's scientific output, informing the observational strategy, and ensuring its success in maximizing the contribution to HE gamma-ray astronomy. In this thesis, I contribute to assessing the sensitivity of the CTA surveys, particularly the GPS and the EGAL survey, to diverse astrophysical sources and signals. Focusing on the GPS, I delve into understanding the detectability of pulsar halos, which emit multi-TeV gamma rays, the detection of which was recently reported by the HAWC Observatory. The study involves a spatial-spectral likelihood analysis, evaluating sensitivity to simple Gaussian extended sources and physically modeled sources. Employing a template-fitting approach, I analyze CTA's GPS sensitivity to extended sources and explore the prospects for pulsar halo detection and characterization. A preliminary population study addresses the visibility of pulsar halos to CTA's GPS and explores the angular sensitivity to extended sources. The thesis sets the detectability prospects of pulsar halos with CTA and investigates what fraction of the preliminary pulsar halo population CTA will be able to probe. The thesis extends its exploration into the persistent mystery of dark matter (DM), a fundamental puzzle in cosmology. The search for DM signals remains a vigorous pursuit in the physics community, utilizing various astrophysical messengers resulting from DM particle annihilation or decay. I investigate the potential of CTA's GPS to detect dark sub-halos within our galaxy, utilizing a similar approach as in the sensitivity assessment to pulsar halos, applied to recent sub-halo population simulations. Furthermore, the thesis addresses the intricate task of disentangling DM components from astrophysical contributions in the observed gamma-ray sky. In terms of the EGAL survey, employing advanced statistical methods such as the cross-correlation technique, I explore the prospects of using CTA's EGAL survey to correlate the Extragalactic Gamma-ray Background (EGRB) with galaxy catalogs, providing insights into DM properties. While traditional methods rely on likelihood analysis with background subtraction or template fitting, the emergence of supervised machine learning (ML) offers a novel, potentially more effective approach for cataloging the sky. The thesis touches upon the usability of ML in the high and VHE gamma-ray sky. My study focuses on CTA's GPS and utilizes deep-learning-based algorithms in a detection pipeline for the automatic classification of extended sources from gamma-ray data. As CTA stands at the forefront of gamma-ray astronomy as the next-generation observatory, the research presented in this thesis contributes a small step towards answering the open questions about pulsar halos and DM, showcasing the potential breakthroughs that may emerge from CTA's observations. The detailed likelihood analysis performed aims to advance our understanding of these enigmas, from the physical intricacies of pulsar halos to the elusive nature of DM, driven by curiosity about the continuous exploration of the Universe's mysteries.
Ključne besede:high-energy gamma-ray astronomy, astroparticle physics, Cherenkov Telescope Array, pulsar halos, dark matter, dissertations
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Kraj izida:Nova Gorica
Kraj izvedbe:Nova Gorica
Založnik:V. Vodeb
Leto izida:2024
Leto izvedbe:2024
Št. strani:XV, 248 str.
PID:20.500.12556/RUNG-9113 Novo okno
COBISS.SI-ID:198004739 Novo okno
UDK:53
NUK URN:URN:SI:UNG:REP:LVGWJEE5
Datum objave v RUNG:06.06.2024
Število ogledov:884
Število prenosov:11
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Detektiranje izvorov žarkov gama in signala temne snovi s pregledi neba s Poljem Teleskopov Čerenkova : disertacija
Opis:Gama žarki služijo kot pomembni glasniki v sodobni astrofiziki, saj ponujajo vpogled v najbolj energetske procese v vesolju. Napredki v astronomiji z gama žarki, podprti z mednarodnim znanstvenim sodelovanjem, so razširili njeno daljnosežnost in zmogljivost. Instrument Fermi-LAT je pomembno prispeval k raziskavam v območju GeV energij in preučil raznolik nabora astrofizikalnih izvorov. Tehnološki napredek, ki je razviden iz delovanja observatorijev, kot so H.E.S.S., MAGIC, VERITAS, HAWC in LHASSO, omogoča raziskovanje pojavov visokih energij pri širokem spektru energij, vse do PeV območja. Skupni podatki, pridobljeni iz Fermi-LAT in zemeljskih detektorjev gama žarkov, zagotavljajo celovit vpogled v kozmične pojave v različnih energetskih režimih. Prizadevanja za katalogizacijo izvorov gama žarkov visokih energij so privedla do odkritja več tisoč izvorov, vključno s pulzarskimi vetrnimi meglenicami, ostanki supernov, pulzarji, blazarji in izbruhi gama žarkov. S pomočjo opazovanja in preučevanja njihove spektralne in prostorske morfologije se naše razumevanje izvora in evolucije teh izvorov vse bolj izpopolnjuje. Polje Teleskopov Čerenkova (angl. Cherenkov Telescope Array, CTA) predstavlja naslednjo mejo v astronomiji zemeljskih observatorijev gama žarkov. Deloval bo pri zelo visokih energijah med 20 GeV in 300 TeV, izboljšana občutljivost, kotna ločljivost in razširjeno vidno polje pa CTA obetajo izjemno natančno opazovanje razširjenih izvorov gama žarkov in izvedbo obsežnih preiskav neba. Ključni znanstveni projekti CTA, vključno s pregledno raziskavo zunajgalaktičnega neba (angl. Extragalactic survey, EGAL) in pregledom Galaktične ravnine (angl. Galactic Plane Survey, GPS), imajo prednost v zagotovljenem časom opazovanj in optimizaciji njihovega znanstvenega izkoristka. Ker je CTA trenutno v gradbeni fazi, se za napovedovanje njegovega odziva na različne signale obsežno uporabljajo simulacije. Ta proaktivni pristop ne le pomaga pri načrtovanju opazovanj, temveč prispeva k oceni znanstvenega izkoristka CTA že med gradnjo, ter zagotavlja njegov uspeh pri odkrivanju skrivnosti našega Vesolja z visokoenergijskimi žarki gama. V tem doktorskem delu prispevam k oceni občutljivosti pregledov neba, ki jih bo opravil CTA, glede na raznolike astrofizikalne signale, zlasti GPS in EGAL. V prvem delu raziskav se osredotočam na GPS in napovedujem zaznavnost pulzarskih halojev, razširjenih emisij okrog pulzarjev, ki oddajajo gama žarke z energijami več TeV, o katerih je nedavno poročal observatorij HAWC. Študija vključuje prostorsko-spektralno analizo verjetnosti, s katero ocenim občutljivost GPS najprej na preproste razširjene izvore, nato pa še na fizikalno modelirane izvore. Z uporabo analize prileganja vzorcev različnih signalov analiziram občutljivost CTA na razširjene izvore in raziskujem možnosti za zaznavanje in karakterizacijo pulzarskih halojev. V druge delu s preliminarno študijo populacije ocenimo vidnost pulzarskih halojev in raziščemo kotno občutljivost na omenjene razširjene izvore. S tem doktorsko delo predstavlja možnosti za zaznavanje pulzarskih halojev s CTA in preučuje, kakšen del predhodno napovedane populacije pulzarskih halojev bo CTA sposoben preučiti. Medtem ko tradicionalne metode temeljijo na analizi verjetnosti z odštevanjem ozadja ali prileganjem vzorcev različnih signalov, razvoj nadzorovanega strojnega učenja (SU) ponuja nov, potencialno učinkovitejši pristop h katalogizaciji neba. Doktorsko delo se dotika uporabnosti SU pri analizi neba žarkov gama visokih in zelo visokih energij. Moja študija se osredotoča na GPS in uporablja algoritme, ki temeljijo na globokem učenju, za avtomatsko klasifikacijo razširjenih izvorov iz podatkov o žarkih gama. Doktorsko delo prav tako raziskuje več desetletij staro skrivnost temne snovi (TS) v vesolju, ki predstavlja eno izmed temeljnih ugank v moderni kozmologiji. Iskanje signalov TS ostaja intenzivno prizadevanje v fizikalni in astrofizikalni skupnosti, pri čemer se za raziskave TS uporablja astrofizikalne glasnike, ki izhajajo iz anihilacije ali razpada delcev TS. V svojih študijah raziskujem potencial GPS za zaznavanje temnih sub-halojev znotraj naše galaksije, pri čemer uporabljam podoben pristop kot pri oceni občutljivosti za pulzarske haloje, v tem primeru uporabljen na nedavnih simulacijah populacije sub-halojev. Delo naslavlja zapleteno nalogo razločevanja TS od astrofizikalnih prispevkov v opaženem nebu gama žarkov. Z uporabo tehnike križne korelacije raziskujem možnosti uporabe EGAL pregleda v korelaciji z ekstragalaktičnim difuznim ozadje gama žarkov s katalogi galaksij, kar omogoča potencialni vpogled v lastnosti delcev TS. Ker CTA kot observatorij naslednje generacije stoji na čelu astronomije žarkov gama, raziskave predstavljene v tem doktorskem delu prispevajo majhen korak k odgovarjanju na odprta vprašanja o pulzarskih halojih in TS, ter nakazujejo potencialne preboje, ki lahko izhajajo iz opazovanj s CTA. Podrobna analiza verjetnosti, ki sem jo izvedla, si prizadeva izboljšati našem razumevanje teh skrivnosti, od fizikalne zapletenosti pulzarskih halojev do skrivnostne narave TS, in spodbuja neprekinjeno radovednost pri raziskovanjeu ugank, ki jih ponuja naše Vesolje.
Ključne besede:visokoenergetska astronomija gama žarkov, fizika astro-delcev, Polje Teleskopov Čerenkova, pulzarski haloji, temna snov, disertacije


Nazaj