Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Modelling-assisted optimisation of hemicellulose-derived monosaccharide valorization : dissertation
Authors:ID Jakob, Ana (Author)
ID Grilc, Miha (Mentor) More about this mentor... New window
Files:.pdf Ana_Jakob.pdf (11,80 MB)
MD5: E696DDE9FA7A4BF95013A962BCF75334
 
Language:English
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FPŠ - Graduate School
Abstract:Hemicellulose, one of the key components of lignocellulosic biomass, and its sugar monomers offer significant potential as a substrate for producing value-added platform chemicals. With both pentoses (xylose and arabinose) and hexoses (glucose, galactose, and mannose), the conversion of hemicellulose can yield various products including furfural, hydroxymethylfurfural (HMF), and levulinic acid. This doctoral thesis investigates the dehydration of various hemicellulose-derived monosaccharides, utilizing catalyst-free systems, as well as homogeneous and heterogeneous catalysts, in both aqueous and organic solvents. Monosaccharide conversion was evaluated in a catalyst-free aqueous solution at temperatures ranging between 130 – 190 °C. Conducting dehydration reactions under simple, hydrothermal conditions highlighted the differences in the reactivity of individual monosaccharides. Experimental data from extensive activity testing enabled the development of accurate kinetic models. Aiming at the optimization of reaction parameters relevant to the post-Organosolv production of furanics and levulinic acid, sulfuric and formic acid were introduced into the reaction system as homogeneous acid catalysts. Reaction kinetics of acid catalysed conversion using sulfuric and formic acid indicated a significant reduction in the activation energy of ketose dehydration. In addition, the addition of both acids enhanced the dehydration rates and promoted the conversion of HMF towards levulinic acid due to its low activation energies 86 – 91 kJ mol−1 and high reaction rate constants. The established kinetic model for individual saccharides was proven to be robust and able to accurately predict optimal reaction conditions for two distinct industrially relevant hemicellulose streams. In pursuit of a more sustainable and recyclable catalyst, various zeolites, specifically H-BEA, were tested. Although H-BEA exhibited excellent catalytic activity, its selectivity towards furanics remained limited in aqueous media. The low activation energy for HMF rehydration facilitated the formation of levulinic acid even at a moderate reaction temperature of 165 °C. Notably, the addition of THF as an organic solvent in combination with H-BEA, drastically improved the product selectivity towards furanics, particularly furfural. In addition to H-BEA zeolite, various types of zeolites with different Si/Al ratios were studied. Catalyst characterization revealed a strong correlation between catalytic activity and acidity. The addition of THF resulted in 90 mol % of furfural after only 30 min, demonstrating an exponential increase in dehydration rates and a decrease in activation energies. This zeolite-THF system was therefore applied for tandem reactions involving both xylose dehydration and furfural hydrogenation. The addition of metallic active sites via a Ni/H-BEA catalyst, and a hydrogen atmosphere, resulted in the catalytic hydrogenation of xylose to tetrahydrofurfuryl alcohol. Adjusting reaction temperatures allowed the production of secondary hydrogenated (2-methylfuran and 2-methyltetrahydrofuran) and dehydration products (tetrahydropyran), while the addition of water as a co-solvent with THF resulted in the complete inhibition of dehydration reactions and the selective formation of xylitol. Through a systematic study of reaction conditions and the development of comprehensive kinetic models, this work provides an in-depth investigation of monosaccharide dehydration. This doctoral thesis represents a comprehensive study to systematically investigate both catalytic and non-catalytic dehydration of five relevant monosaccharides, providing a methodical kinetic modelling approach that addresses the challenges associated with the complexity related to hemicellulose conversion.
Keywords:hemicellulose, monosaccharides, kinetic modelling, furanics, catalysis, dissertations
Publication status:Published
Publication version:Version of Record
Place of publishing:Nova Gorica
Place of performance:Nova Gorica
Publisher:A. Jakob
Year of publishing:2025
Year of performance:2025
Number of pages:XXIV, 25-204 str.
PID:20.500.12556/RUNG-9826 New window
COBISS.SI-ID:226676995 New window
UDC:54
NUK URN:URN:SI:UNG:REP:IAKGIQNR
Publication date in RUNG:19.02.2025
Views:191
Downloads:1
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:28.01.2025

Secondary language

Language:Slovenian
Title:Modelno-podprta optimizacija valorizacije monosaharidov pridobljenih iz hemicelluloze : disertacija
Abstract:Hemiceluloza predstavlja ključni sestavni del lignocelulozne biomase in skupaj z monosaharidi nudi velik potencial za proizvodnjo platformnih kemikalij z visoko dodano vrednostjo. Tako pentoze, kot sta ksiloza in arabinoza, ter heksoze, vključno z glukozo, galaktozo in manozo lahko med predelavo hemiceluloze pretvorimo v različne proizvode, kot so furfural, hidroksimetilfurfural (HMF) in levulinska kislina. Namen te doktorske naloge je sistematično preučiti dehidracijo različnih sladkorjev pridobljenih iz hemiceluloze, v reakcijskem sistemu brez katalizatorja kot tudi z uporabo homogenih in heterogenih kislinskih katalizatorjev, v vodnem in organskem mediju. Pretvorba izbranih sladkorjev (glukoze, galaktoze, manoze, arabinoze in ksiloze) je bila zato sprva ocenjena v vodni raztopini brez dodatka katalizatorja v temperaturnem območju med 130 in 190 °C. Dehidracija pentoz in heksos v preprostih hidrotermalnih pogojih je razkrila razlike v reaktivnosti posameznih monosaharidov. Eksperimentalni podatki iz obsežnega testiranja reaktivnosti so omogočili razvoj natančnega kinetičnega modela. Z namenom optimizacije reakcijskih parametrov, pomembnih za post-Organosolv proizvodnjo ciljnih produktov, sta bili v reakcijski sistem kot homogeni katalizator dodani žveplova in mravljinčna kislina. Kinetika reakcij dehidracije s pomočjo kislinske katalize različnih monosaharidov je pokazala znatno zmanjšanje aktivacijske energije pri dehidracij ketoz. Dodatek kislin je omogočil tudi pretvorbo HMF v levulinsko kislino zaradi nizkih aktivacijskih energij (86–91 kJ mol−1) in visokih konstant hitrosti reakcije. Uporabljen kinetični model za posamezne monosaharide se je izkazal za dovolj robustnega, kar je omogočilo natančno napoved optimalnega časa in temperature reakcije za valorizacijo dveh industrijsko pomembnih vzorcev hemiceluloze. V iskanju bolj trajnostnega in reciklabilnega katalizatorja so bili pod hidrotermalnimi pogoji testirani tudi različni zeoliti, zlasti H-BEA. Čeprav se je H-BEA izkazal za katalizator z odlično aktivnostjo, je bila selektivnost furfurala in HMF-ja pri uporabi le tega nizka. Vendar pa je nizka aktivacijska energija rehidracije HMF-ja omogočila tvorbo levulinske kisline že pri zmerni reakcijski temperaturi 165 °C. Dodatek THF-a kot sotopila je po le 30 minutah omogočil doseganje visokih izkoristkov (90 mol %) furfurala, pri čemer je bilo mogoče opaziti eksponentno povečanje hitrosti dehidracije in zmanjšanje aktivacijskih energij. Sistem zeolita in THF-a, je bil tako ponovno uporabljen pri proučevanju tandemske reakcije, ki vključuje dehidracijo ksiloze in hidrogenacijo furfurala. Dodatek kovinskih aktivnih mest z uporabo Ni/H-BEA v vodikovi atmosferi je omogočil učinkovito katalitsko pretvorbo ksiloze v tetrahidrofurfuril alkohol z izkoristkom do 44 mol %. Poleg tega je sprememba reakcijskih temperatur omogočila nastanek različnih sekundarnih produktov hidrogenacije (2-metilfuran in 2-metiltetrahidrofuran) kot tudi dehidracije (tetrahidropiran). Medtem ko je dodatek vode kot so-topila skupaj s THF popolnoma zavrl reakcije dehidracije in omogočil selektivno tvorbo ksilitola. S sistematično študijo reakcijskih pogojev in razvojem kompleksnega kinetičnega modela ta disertacija temelji na poglobljeni raziskavi dehidracije monosaharidov pridobljenih iz hemiceluloze. In hkrati predstavlja celovito študijo, ki sistematično preučuje tako katalitično kot ne-katalitično dehidracijo petih relevantnih monosaharidov, ter zagotavlja metodičen pristop k kinetičnemu modeliranju, ki naslavlja izzive, povezane s kompleksnostjo pretvorbe hemiceluloze.
Keywords:hemiceluloza, monosaharidi, kinetično modeliranje, furani, kataliza, disertacije


Back