Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
University of Nova Gorica
University
Study
Research
Repository of University of Nova Gorica
About
Search
Browse
Statistics
Login
Show document
A+
|
A-
|
|
SLO
|
ENG
Title:
Large-scale cosmic-ray anisotropies measured by the Pierre Auger Observatory
Authors:
ID
Roulet, Esteban
(Author)
ID
Filipčič, Andrej
(Author)
ID
Lundquist, Jon Paul
(Author)
ID
Shivashankara, Shima Ujjani
(Author)
ID
Stanič, Samo
(Author)
ID
Vorobiov, Serguei
(Author)
ID
Zavrtanik, Danilo
(Author)
ID
Zavrtanik, Marko
(Author), et al.
Files:
UHECR2024_008.pdf
(2,76 MB)
MD5: 7F987F99C3412F63490DF5F01B0184F0
https://doi.org/10.22323/1.484.0008
https://pos.sissa.it/484/008/pdf
This document has even more files. Complete list of files is available
below
.
Language:
English
Work type:
Unknown
Typology:
1.08 - Published Scientific Conference Contribution
Organization:
UNG - University of Nova Gorica
Abstract:
An update of the measurements of large-scale anisotropies in the arrival directions of ultra high-energy cosmic rays detected at the Pierre Auger Observatory is presented. The established dipolar anisotropy in right ascension has now reached a significance of 6.8σ when considering all energies above 8 EeV and 5.7 σ when only considering energies between 8 and 16 EeV. The 3D dipole amplitude and direction are reconstructed in four different energy bins above 4 EeV. At energies above 8 EeV it points more than 100∘ away from the Galactic centre, providing evidence that the anisotropy observed is of extragalactic origin. An analysis allowing for both dipolar and quadrupolar anisotropies finds qualitatively similar dipole components and no significant quadrupole components. The results for the angular power spectrum are shown, demonstrating that no other statistically significant multipoles are present. The equatorial dipole components are presented down to 0.03 EeV using a trigger which has been optimized for low energies. We find no significant departures from isotropic expectations below 8 EeV, although below 2 EeV the phases appear to be consistently aligned with the right ascension of the Galactic centre. Finally, model predictions based on source emission scenarios obtained in the combined fit of spectrum and composition data above 0.6 EeV are discussed and compared with observations.
Keywords:
ultra-high-energy cosmic rays
,
Pierre Auger Observatory
,
large scale anisotropies
Publication status:
Published
Publication version:
Version of Record
Year of publishing:
2025
Number of pages:
7 str.
PID:
20.500.12556/RUNG-9933
COBISS.SI-ID:
230056195
UDC:
52
ISSN on article:
1824-8039
DOI:
10.22323/1.484.0008
NUK URN:
URN:SI:UNG:REP:C4TENVL2
Publication date in RUNG:
24.03.2025
Views:
146
Downloads:
0
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Record is a part of a proceedings
Title:
UHECR 2024, The 7th International Symposium on Ultra-High-Energy Cosmic Rays
COBISS.SI-ID:
229932291
Record is a part of a journal
Title:
Proceedings of science
Shortened title:
Pos proc. sci.
Publisher:
Sissa
ISSN:
1824-8039
COBISS.SI-ID:
20239655
Document is financed by a project
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0031
Name:
Večglasniška astrofizika
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Files
Loading...
Back