Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Astrophysical models to interpret the Pierre Auger Observatory data
Authors:ID González, Juan Manuel (Author)
ID Filipčič, Andrej (Author)
ID Lundquist, Jon Paul (Author)
ID Shivashankara, Shima Ujjani (Author)
ID Stanič, Samo (Author)
ID Vorobiov, Serguei (Author)
ID Zavrtanik, Danilo (Author)
ID Zavrtanik, Marko (Author), et al.
Files:URL https://pos.sissa.it/484/015
 
.pdf UHECR2024_015.pdf (790,55 KB)
MD5: 7ADC137BA05D0682186EB88A687A99BA
 
URL https://doi.org/10.22323/1.484.0015
 
This document has even more files. Complete list of files is available below.
Language:English
Work type:Unknown
Typology:1.08 - Published Scientific Conference Contribution
Organization:UNG - University of Nova Gorica
Abstract:The Pierre Auger Observatory has measured the spectrum of ultra-high-energy cosmic rays with unprecedented precision, as well as the distribution of the depths of the maximum of the shower development in the atmosphere, which provide a reliable estimator of the mass composition. The measurements above 10[sup]17.8 eV can be interpreted assuming two populations of uniformly distributed sources, one with a soft spectrum dominating the flux below few EeV, and another one with a very hard spectrum dominating above that energy. When considering the presence of intense extragalactic magnetic fields between our Galaxy and the closest sources and a high-energy population with low spatial density, a magnetic horizon appears, suppressing the cosmic ray's flux at low-energies, which could explain the very hard spectrum observed at Earth. The distribution of arrival directions, which at energies above 32 EeV shows indications of a correlation with a population of starburst galaxies or the radio galaxy Centaurus A (Cen A), are also important to constrain the sources. It is shown that adding a fractional contribution from these sources of about 20% on top of an homogeneous background leads to an improvement of the model likelihood.
Keywords:ultra-high-energy cosmic rays, UHECR energy spectrum, UHECR mass composition, UHECR anisotropies, UHECR propagation, UHECR data interpretation, extragalactic magnetic fields, starburst galaxies, Centaurus A, Pierre Auger Observatory
Publication status:Published
Publication version:Version of Record
Year of publishing:2025
Number of pages:8 str.
PID:20.500.12556/RUNG-9934 New window
COBISS.SI-ID:230054147 New window
UDC:539.1
ISSN on article:1824-8039
DOI:10.22323/1.484.0015 New window
NUK URN:URN:SI:UNG:REP:RR1KSIWM
Publication date in RUNG:24.03.2025
Views:153
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a proceedings

Title:UHECR 2024, The 7th International Symposium on Ultra-High-Energy Cosmic Rays
COBISS.SI-ID:229932291 New window

Record is a part of a journal

Title:Proceedings of science
Shortened title:Pos proc. sci.
Publisher:Sissa
ISSN:1824-8039
COBISS.SI-ID:20239655 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P1-0031
Name:Večglasniška astrofizika

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Files

Loading...

Back