Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Overview of hadronic interaction studies at the Pierre Auger Observatory
Authors:ID Vícha, Jakub (Author)
ID Filipčič, Andrej (Author)
ID Lundquist, Jon Paul (Author)
ID Shivashankara, Shima Ujjani (Author)
ID Stanič, Samo (Author)
ID Vorobiov, Serguei (Author)
ID Zavrtanik, Danilo (Author)
ID Zavrtanik, Marko (Author), et al.
Files:.pdf UHECR2024_034.pdf (782,91 KB)
MD5: E33938A27BEC9E5FD8E0565B60E8D2DE
 
URL https://doi.org/10.22323/1.484.0034
 
URL https://pos.sissa.it/484/034/pdf
 
This document has even more files. Complete list of files is available below.
Language:English
Work type:Unknown
Typology:1.08 - Published Scientific Conference Contribution
Organization:UNG - University of Nova Gorica
Abstract:The combination of fluorescence and surface detectors at the Pierre Auger Observatory offers unprecedented precision in testing models of hadronic interactions at center-of-mass energies around 70 TeV and beyond. However, for some time, discrepancies between model predictions and measured air-shower data have complicated efforts to accurately determine the mass composition of ultra-high-energy cosmic rays. A key inconsistency is the deficit of simulated signals compared to those measured with the surface detectors, typically interpreted as a deficit in the muon signal generated by the hadronic component of simulated showers. Recently, a new global method has been applied to the combined data from the surface and fluorescence detectors at the Pierre Auger Observatory. This method simultaneously determines the mass composition of cosmic rays and evaluates variations in the simulated depth of the shower maximum and hadronic signals on the ground. The findings reveal not only the alleviated muon problem but also show that all current models of hadronic interactions predict depths of the shower maximum that are too shallow, offering new insights into deficiencies in these models from a broader perspective.
Keywords:ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, hadronic interactions
Publication status:Published
Publication version:Version of Record
Year of publishing:2025
Number of pages:7 str.
PID:20.500.12556/RUNG-9947 New window
COBISS.SI-ID:230627331 New window
UDC:52
ISSN on article:1824-8039
DOI:10.22323/1.484.0034 New window
NUK URN:URN:SI:UNG:REP:0PA49WGB
Publication date in RUNG:28.03.2025
Views:227
Downloads:5
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a proceedings

Title:UHECR 2024, The 7th International Symposium on Ultra-High-Energy Cosmic Rays
COBISS.SI-ID:229932291 New window

Record is a part of a journal

Title:Proceedings of science
Shortened title:Pos proc. sci.
Publisher:Sissa
ISSN:1824-8039
COBISS.SI-ID:20239655 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0031
Name:Večglasniška astrofizika

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Files

Loading...

Back