1. Okolju prijazna sinteza metanola s hidrogeniranjem ogljikovega dioksida preko trikomponentnih katalizatorjevTeja Cankar, 2017, undergraduate thesis Abstract: Zaradi naraščanja koncentracije CO2 v ozračju in njenega negativnega vpliva na okolje, se išče načine, s katerimi bi to koncentracijo zmanjšali. Ena izmed možnosti je direktna hidrogenacija atmosferskega CO2 do metanola, s čimer bi CO2 uporabili kot surovino, hkrati pa pridobili metanol, ki je uporabna kemikalija. Ta proces zahteva uporabo učinkovitega in stabilnega katalizatorja ter optimalne reakcijske pogoje. V tem raziskovalnem delu smo s katalitičnimi testi proučevali vpliv reakcijskih pogojev, različnih komponent katalizatorja in sinteznih metod na učinkovitost katalizatorjev za sintezo metanola. Kot optimalna temperatura in tlak sta se izkazala območja od 220 do 240 °C in od 40 do 50 barov, kjer je reakcija dovolj hitra, hkrati pa še ni bistveno termodinamsko zavrta, in pride do zadostne količine sintetiziranega metanola. Kot najbolj učinkovito molsko razmerje plinov se je izkazalo H2 : CO2 = 3 : 1 in kot najbolj učinkovita plinska urna prostorska hitrost 6000 h-1. To sta pogoja, kjer je količina sintetiziranega metanola zadosti velika ob sprejemljivi porabi reaktantov. Kot najbolj učinkovit katalizator se je izkazal komercialno uporabljen HiFUEL®, dobre lastnosti pa sta pokazala tudi CuO/MgO/Al2O3 in CuO/ZnO/CeO2. CuO/MgO/Al2O3 katalizator je dobro aktiven v širšem temperaturnem območju (220–260 °C), njegova aktivnost je okoli 0,6 molCH3OH•l-1•h-1. Prednost CuO/ZnO/CeO2 katalizatorja pa je izredno visoka selektivnost, in sicer pri 220 °C približno 65 %. Found in: osebi Keywords: hidrogenacija CO2, sinteza metanola, učinkovitost katalizatorjev, reakcijski pogoji, različna sestava katalizatorjev Published: 17.11.2017; Views: 2473; Downloads: 140
Fulltext (5,84 MB) |
2. Synthesis of a Cu/ZnO Nanocomposite by Electroless Plating for the Catalytic Conversion of CO2 to MethanolMaja Pori, Iztok Arčon, Marjan Marinšek, Goran Dražić, Blaž Likozar, Zorica Crnjak Orel, Damjan Lašič Jurković, 2019, original scientific article Abstract: The process of methanol synthesis based on the hydrogenation of CO2
was investigated over binary Cu/ZnO catalyst materials,
prepared by applying a novel electroless plating fabrication method. The activity of the produced catalytic samples
was determined at temperature range between 200 and 300 °C and the feedstock conversion data were supplemented with
a detailed microstructure analysis using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction
(XRD) and Cu and Zn K-edge, X-ray absorption near-edge structure (XANES) measurements and extended X-ray
absorption fine-structure (EXAFS) measurements. It was confirmed that the disorder in the Cu crystallites created unique
geometrical situations, which acted as the additional reactive centres for the adsorption of the reactant molecule species.
Copper and zinc structural synergy (spill-over) was also demonstrated as being crucial for the carbon dioxide’s activation.
EXAFS and XANES results provide strong evidence for surface alloying between copper and zinc and thus the present results
demonstrate new approach applicable for explaining metal–support interactions. Found in: osebi Keywords: EXAFS, CuZn alloy, Spillover mechanism, CO2 valorization, Electroless deposition method, Heterogeneous
catalysis Published: 12.04.2019; Views: 1037; Downloads: 0
Fulltext (1,92 MB) |
3. Effect of Na, Cs and Ca on propylene epoxidation selectivity over CuOx/SiO2 catalysts studied by catalytic tests, in-situ XAS and DFTJanvit Teržan, Matej Huš, Iztok Arčon, Blaž Likozar, Petar Djinović, 2020, original scientific article Abstract: This research focuses on epoxidation of propylene over pristine, Na, Ca and Cs modified
CuOx/SiO2 catalysts using O2. The selectivity of the reaction is analyzed using a combination
of catalytic tests, in-situ XAS and DFT calculations. The initially present subnanometer CuO
clusters are present in all catalysts which re-disperse/flatten during reaction. During catalytic
reaction, the Cu1+ becomes the predominant oxidation state. There is no correlation between
propylene oxide (PO) selectivity and copper oxidation state. DFT analysis of the propylene
reaction pathway revealed that Na, Cs, and Ca addition decreases the bonding strength of
propylene to CuO and decreases the O2 activation barrier, while simultaneously increase the
exothermicity of O2 dissociation. The Na induced Cu-O bond modification decreases the
activation barrier from 0.87 to 0.71 eV for the oxametallacycle (OMC) ring closure (first step
in the reaction pathway favoring selectivity towards PO) compared to pristine 5Cu catalyst.
At the same time, we observed an increase (from 0.45 to 0.72 eV) of the barrier for the
abstraction of allylic hydrogen. The opposite effect is achieved by Ca addition: the activation
barrier for OMC ring closure increases to 1.08 eV and that for allylic hydrogen stripping
decreases to 0.16 eV. Found in: osebi Keywords: Alkali modification, propylene epoxidation, reaction mechanism, copper oxide, activation barrier. Published: 05.06.2020; Views: 453; Downloads: 0
Fulltext (22,78 MB) |