Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Magnetic anisotropy of strontium ferrite nanoparticles
F. Albertini, C. Sangregorio, Blaž Belec, A. Quesada, T. Schliesch, M. Suara-Muzquiz, Petra Jenuš, M. Albino, M. Petrecca, M. Cabassi, D. Mishra, Cesar de Julian Fernandez, 2019, published scientific conference contribution abstract

Found in: osebi
Keywords: hexaferrite, nanoparticles, magnetic anisotropy, SPD
Published: 04.06.2019; Views: 655; Downloads: 0
.pdf Fulltext (36,89 MB)

2.
Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India
Urs Baltensperger, Griša Močnik, Surender Singh, Suresh Tiwari, Deewan Bisht, Atul Srivastava, Suneeti Mishra, Navaneeth Thamban, Ashutosh Shukla, Vipul Lalchandani, Francesco Canonaco, Deepika Bhattu, Anna Tobler, Sachchida Tripathi, J. G. Slowik, Andre S. H. Prevot, 2020, original scientific article

Abstract: Delhi is one of the most polluted cities worldwide and a comprehensive understanding and deeper insight into the air pollution and its sources is of high importance. We report 5 months of highly time-resolved measurements of non-refractory PM2.5 and black carbon (BC). Additionally, source apportionment based on positive matrix factorization (PMF) of the organic aerosol (OA) fraction is presented. The highest pollution levels are observed during winter in December/January. During that time, also uniquely high chloride concentrations are measured, which are sometimes even the most dominant NR-species in the morning hours. With increasing temperature, the total PM2.5 concentration decreases steadily, whereas the chloride concentrations decrease sharply. The concentrations measured in May are roughly 6 times lower than in December/January. PMF analysis resolves two primary factors, namely hydrocarbon-like (traffic-related) OA (HOA) and solid fuel combustion OA (SFC-OA), and one or two secondary factors depending on the season. The uncertainties of the PMF analysis are assessed by combining the random a-value approach and the bootstrap resampling technique of the PMF input. The uncertainties for the resolved factors range from ±18% to ±19% for HOA, ±7% to ±19% for SFC-OA and ±6 % to ±11% for the OOAs. The average correlation of HOA with eBCtr is R2 = 0.40, while SFC-OA has a correlation of R2 = 0.78 with eBCsf. Anthracene (m/z 178) and pyrene (m/z 202) (PAHs) are mostly explained by SFC-OA and follow its diurnal trend (R2 = 0.98 and R2 = 0.97). The secondary oxygenated aerosols are dominant during daytime. The average contribution during the afternoon hours (1 pm–5 pm) is 59% to the total OA mass, with contributions up to 96% in May. In contrast, the primary sources are more important during nighttime: the mean nightly contribution (22 pm–3 am) to the total OA mass is 48%, with contributions up to 88% during some episodes in April.
Found in: osebi
Keywords: New Delhi, PM2.5, Source apportionment, PMF
Published: 20.07.2020; Views: 36; Downloads: 0
.pdf Fulltext (4,71 MB)

Search done in 0 sec.
Back to top