Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 10 / 11
First pagePrevious page12Next pageLast page
1.
Determination of iron species in Arctic water by optimized photothermal beam deflection spectroscopy
Hanna Budasheva, Dorota Korte, Arne Bratkič, Mladen Franko, 2018, published scientific conference contribution abstract

Found in: osebi
Keywords: phototermal beam deflection spectroscopy, arctic water, iron species
Published: 16.07.2018; Views: 825; Downloads: 0
.pdf Fulltext (777,92 KB)

2.
3.
4.
5.
Determination of Dissolved Iron Redox Species in Freshwater Sediment using DGT Technique Coupled to BDS
Yue Gao, Arne Bratkič, Dorota Korte, Aleksander Kravos, Hanna Budasheva, Mladen Franko, 2019, original scientific article

Abstract: In this work we have developed a novel method for determination of iron redox species by the use of diffusive gradients in thin-film (DGT) technique coupled to photothermal beam deflection spectroscopy (BDS). The combination of both methods achieved low limit of detection (LOD) of 0.14 μM for Fe (II) ions. The total Fe concentration determined in the Vrtojbica river sediment (Slovenia, Rožna Dolina, 5000 Nova Gorica) was 49.3 μgL–1. The Fe (II) and Fe (III) concentra- tion amounted to 12.8 μgL–1 and 39.9 μgL–1, respectively. Such an approach opens new opportunities for monitoring the content of iron species in natural waters and sediments and provides highly sensitive chemical analysis and an accurate qualitative and quantitative characteristic of the materials under study.
Found in: osebi
Keywords: Beam deflection spectroscopy, diffusive gradients in thin-film technique, iron redox species, photothermal techniques, sediment
Published: 26.02.2019; Views: 416; Downloads: 25
.pdf Fulltext (452,58 KB)

6.
Photothermal lens technique: a comparison between conventional and self-mixing schemes
John Fredy Barrera Ramírez, Dorota Korte, Jose Juan Suárez-Vargas, Jehan Akbar, Evelio E. Ramírez-Miquet, Fatima Matroodi, Imrana Ashraf, Humberto Cabrera, Hanna Budasheva, Joseph J. Niemela, 2019, original scientific article

Abstract: This work focuses on assessing the analytical capabilities of a new photothermal lens method based on the self-mixing effect to reliably measure metallic traces in water-ethanol solutions. We compare it with the conventional thermal lens scheme, considering the low detection limit and versatility. A theoretical model is presented to describe the laser power variations as a function of the photothermal parameters of the analyzed sample. The experimental results demonstrate that the laser intensity variations, induced by the external optical feedback, are governed by the photothermal lens effect. Measurements of Fe(II)-1,10-phenanthroline in water–ethanol solutions show a favourable correspondence and agreement with the theory. The low detection limits obtained by the two analytic techniques also agree very well. Nevertheless, our instrument presents advantages regarding compactness and simplicity, suggesting that this platform could be potentially useful as a robust analytical tool for metallic trace detection. In addition, calibration of the method is performed by measuring the so-called self-mixing constant.
Found in: osebi
Keywords: thermal lens, photothermal spectroscopy, self-mixing effect, trace detection
Published: 05.04.2019; Views: 384; Downloads: 0
.pdf Fulltext (715,09 KB)

7.
Determination of bioavailable Fe redox fractions of sediment pore waters by DGT passive sampling and BDS detection
Mladen Franko, Arne Bratkič, Dorota Korte, Hanna Budasheva, 2019, published scientific conference contribution abstract

Abstract: The bioavailability and toxicity of contaminants in sediments to benthic organisms depend on the speciation of the contaminant [1]. The level of iron supply to sediments creates contrasting chemical pathways, each producing distinctive mineral assemblag- es. Reliable measurement of Fe redox species (Fe2+ and Fe3+) in sediments is essential for studies of pollutants or trace-element cycling. This is, however, a difficult task, because the distribution of chemical species often changes during sampling and storage. In this work the Diffusive Gradients in Thin-films technique (DGT) is investigated as a passive sampling approach used in combination with photothermal beam deflection spectroscopy (BDS) as a detection method for determination of labile Fe-redox species in sediments and natural waters. DGT offers the advantage of pre-concentration of labile (i.e. bioavailable) Fe species from the total dissolved Fe pool in sediment pore waters [2]. The advantage of using BDS [3-4] is also in avoiding contamination by using additional steps as extraction or pre-concentration. Furthermore, combined DGT-BDS provides 2D information about distribution of Fe2+ and the total Fe content in the resin hydrogels [5]. The goal of this research is to show the repeatability of this technique for determining trace amounts of Fe redox species in environmental samples.
Found in: osebi
Keywords: beam deflection spectrometry, diffusive gradients in thin-films, iron species
Published: 16.07.2019; Views: 216; Downloads: 0
.pdf Fulltext (29,60 MB)

8.
9.
10.
Search done in 0 sec.
Back to top