Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
2.
Bora wind, Wind speed vertical profile, Logarithmic law, Power law
Klemen Bergant, Samo Stanič, Marija Bervida, 2018, published scientific conference contribution

Abstract: Bora is cold and gusty downslope wind with variable gust frequency and duration, appearing on the lee side of Dinaric Alps. Its flow characteristics are unique and theoretically still not fully described, especially for modeling purposes. We present an analysis of the wind speed vertical profiles at Razdrto, which lies in a gap between the Nanos and Javorniki plateau in southwest Slovenia and is strongly exposed to Bora. An analysis of the vertical wind speed profiles during Bora episodes is based on experimental wind data, provided by Helikopter energija, for six Bora events of different duration, appearing between April 2010 and May 2011. Average wind speed in 10-minute intervals was collected at four different heights (20, 31, 40 and 41.7 m above the ground)at the wind turbine site in Razdrto using cup anemometers. Wind direction data with same temporal resolution was obtained from a single wind vane placed at 40.9 m above the ground. Based on the collected data, the applicability of the empirical power-law and the logarithmic law profiles, commonly used for the description of neutrally stratified atmosphere, was investigated for the case of Bora. The parameters for the power-law and logarithmic law were obtained by fitting the wind speed data using linear regression method and are compared to standard values for that particular type of terrain. The quality of fits was very good with r2 above 0.9, indicating that both power-law and logarithmic law adequately describe mean horizontal Bora wind. The median value of the power-law coefficient was found to be 0.16±0.03, which is consistent with standard value for neutral atmosphere (0.143). The aerodynamic roughness varied from 0.003 m to 0.22 m with the median value of 0.09±0.07, which describes open level country terrain with some trees. The event in November 2010 with large roughness is expected to be due to specific wind direction and surface conditions.
Found in: osebi
Keywords: Bora wind, Wind speed vertical profile, Logarithmic law, Power law
Published: 07.02.2019; Views: 492; Downloads: 4
This document has many files! More...

3.
Near-Ground Profile of Bora Wind Speed at Razdrto, Slovenia
Klemen Bergant, Samo Stanič, Marija Bervida, Benedikt Strajnar, 2019, original scientific article

Abstract: Southwest Slovenia is a region well-known for frequent episodes of strong and gusty Bora wind, which may damage structures, affect traffic, and poses threats to human safety in general. With the increased availability of computational power, the interest in high resolution modeling of Bora on local scales is growing. To model it adequately, the flow characteristics of Bora should be experimentally investigated and parameterized. This study presents the analysis of wind speed vertical profiles at Razdrto, Slovenia, a location strongly exposed to Bora during six Bora episodes of different duration, appearing between April 2010 and May 2011. The empirical power law and the logarithmic law for Bora wind, commonly used for the description of neutrally stratified atmosphere, were evaluated for 10-min averaged wind speed data measured at four different heights. Power law and logarithmic law wind speed profiles, which are commonly used in high resolution computational models, were found to approximate well the measured data. The obtained power law coefficient and logarithmic law parameters, which are for modeling purposes commonly taken to be constant for a specific site, were found to vary significantly between different Bora episodes, most notably due to different wind direction over complex terrain. To increase modeling precision, the effects of local topography on wind profile parameters needs to be experimentally assessed and implemented.
Found in: osebi
Keywords: Bora wind, logarithmic law, power law, roughness length, wind profile
Published: 04.10.2019; Views: 152; Downloads: 5
.pdf Fulltext (5,90 MB)

Search done in 0 sec.
Back to top