Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
2.
Large-Scale Distribution of Arrival Directions of Cosmic Rays Detected at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Olivier Deligny, 2015, published scientific conference contribution

Abstract: The large-scale distribution of arrival directions of high-energy cosmic rays is a key observable in attempts to understanding their origin. The dipole and quadrupole moments are of special interest in revealing potential anisotropies. An unambiguous measurement of these moments as well as of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV has been performed. Thanks to the full-sky coverage, the measurement of the dipole moment reported in this study does not rely on any assumption on the underlying flux of cosmic rays. As well, the resolution on the quadrupole and higher order moments is the best ever obtained. The resulting multipolar expansion of the flux of cosmic rays allows a series of anisotropy searches to be performed, and in particular to report on the first angular power spectrum of cosmic rays. This allows a comprehensive description of the angular distribution of cosmic rays above 10[sup]19 eV.
Found in: osebi
Keywords: Pierre Auger Observatory, Telescope Array, high-energy cosmic rays, large-scale anisotropies, angular power spectrum
Published: 08.03.2016; Views: 1891; Downloads: 117
.pdf Fulltext (462,61 KB)

Search done in 0 sec.
Back to top