Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis
Marie Camredon, Jacqueline F Hamilton, Mohammed S Alam, Kevin P Wyche, Timo Carr, Iain R White, Paul S Monks, Andrew R Rickard, William J Bloss, 2010, original scientific article

Abstract: Secondary Organic Aerosol (SOA) affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE) simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous-and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i) propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii) provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii) explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra
Found in: osebi
Keywords: Aerosol, Aerosol formation, Smog chamber
Published: 18.07.2019; Views: 495; Downloads: 0
.pdf Fulltext (1,27 MB)

2.
Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the REPARTEE experiment and its conclusions
Gavin J Phillips, Carole Helfter, Chiara F Di Marco, Eiko Nemitz, Fay Davies, Janet F Barlow, Tyrone Dunbar, Iain R White, Dudley E Shallcross, Stephen J Henshaw, K Fredrik Peterson, Brian Davison, Damien Martin, Ben Langford, C Nicholas Hewitt, Stephen M Ball, Justin M Langridge, A K Benton, Roderick L Jones, Paul I Williams, John Whitehead, Martin W Gallagher, Claire Martin, James R Dorsey, Hugh Coe, James D Allan, William J Bloss, Alistair J Thorpe, David C S Beddows, Manuel DallOsto, Roy M Harrison, Steven Smith, 2012, review article

Abstract: The Regents Park and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160-190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.
Found in: osebi
Keywords: megacity, trace gas, urban atmosphere, atmospheric transport, chemical composition, aerosol
Published: 18.07.2019; Views: 608; Downloads: 0
.pdf Fulltext (4,66 MB)

Search done in 0 sec.
Back to top