Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
2.
Solvothermal synthesis of iron phosphides and their application for efficient electrocatalytic hydrogen evolution
Saim Emin, Takwa Chouki, Manel Machreki, 2020, original scientific article

Abstract: Abstract In this paper, we present a solvothermal synthesis of iron phosphide electrocatalysts using a triphenylphosphine (TPP) precursor. The synthetic protocol generates Fe2P phase at 300 °C and FeP phase at 350 °C. To enhance the catalytic activities of obtained iron phosphide particles heat-treatments were carried out at elevated temperatures. Annealing at 500 °C under reductive atmosphere induced structural changes in the samples: (i) Fe2P provided a pure Fe3P phase (Fe3P−500 °C) and (ii) FeP transformed into a mixture of iron phosphide phases (Fe2P/FeP−500 °C). Pure Fe2P films was prepared under argon atmosphere at 450 °C (Fe2P−450 °C). The electrocatalytic activities of heat-treated Fe2P−450 °C, Fe3P−500 °C, and Fe2P/FeP−500 °C catalysts were studied for hydrogen evolution reaction (HER) in 0.5 M H2SO4. The HER activities of the iron phosphide catalyst were found to be phase dependent. The lowest electrode potential of 110 mV vs. a reversible hydrogen electrode (RHE) at 10 mA cm−2 was achieved with Fe2P/FeP−500 °C catalyst.
Found in: ključnih besedah
Summary of found: ...Solvothermal synthesis, Iron phosphide, Electrocatalyst, Hydrogen evolution, Overpotential...
Keywords: Solvothermal synthesis, Iron phosphide, Electrocatalyst, Hydrogen evolution, Overpotential
Published: 20.07.2020; Views: 176; Downloads: 0
.pdf Fulltext (2,52 MB)

Search done in 0 sec.
Back to top