Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 20
First pagePrevious page12Next pageLast page
1.
Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)
Eleni Liakakou, Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, M. Tsagkaraki, D. Paraskevopoulou, Aikaterini Bougiatioti, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, original scientific article

Abstract: This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015–April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer.
Keywords: spectral aerosol absorption, brown carbon, wood burning, organic aerosols, chemical composition, Athens
Published in RUNG: 10.05.2024; Views: 14; Downloads: 0
URL Link to file

2.
Absorption enhancement of black carbon particles in a Mediterranean city and countryside : effect of particulate matter chemistry, ageing and trend analysis
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, Maria Cruz Minguillon, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, 2022, original scientific article

Abstract: Abstract. Black carbon (BC) is recognized as the most important warming agent among atmospheric aerosol particles. The absorption efficiency of pure BC is rather well-known, nevertheless the mixing of BC with other aerosol particles can enhance the BC light absorption efficiency, thus directly affecting Earth's radiative balance. The effects on climate of the BC absorption enhancement due to the mixing with these aerosols are not yet well constrained because these effects depend on the availability of material for mixing with BC, thus creating regional variations. Here we present the mass absorption cross-section (MAC) and absorption enhancement of BC particles (Eabs), at different wavelengths (from 370 to 880 nm for online measurements and at 637 nm for offline measurements) measured at two sites in the western Mediterranean, namely Barcelona (BCN; urban background) and Montseny (MSY; regional background). The Eabs values ranged between 1.24 and 1.51 at the urban station, depending on the season and wavelength used as well as on the pure BC MAC used as a reference. The largest contribution to Eabs was due to the internal mixing of BC particles with other aerosol compounds, on average between a 91 % and a 100 % at 370 and 880 nm, respectively. Additionally, 14.5 % and 4.6 % of the total enhancement at the short ultraviolet (UV) wavelength (370 nm) was due to externally mixed brown carbon (BrC) particles during the cold and the warm period, respectively. On average, at the MSY station, a higher Eabs value was observed (1.83 at 637 nm) compared to BCN (1.37 at 637 nm), which was associated with the higher fraction of organic aerosols (OA) available for BC coating at the regional station, as denoted by the higher organic carbon to elemental carbon (OC:EC) ratio observed at MSY compared to BCN. At both BCN and MSY, Eabs showed an exponential increase with the amount of non-refractory (NR) material available for coating (RNR-PM). The Eabs at 637 nm at the MSY regional station reached values up to 3 during episodes with high RNR-PM, whereas in BCN, Eabs kept values lower than 2 due to the lower relative amount of coating materials measured at BCN compared to MSY. The main sources of OA influencing Eabs throughout the year were hydrocarbon OA (HOA) and cooking-related OA (COA), i.e. primary OA (POA) from traffic and cooking emissions, respectively, at both 370 and 880 nm. At the short UV wavelength (370 nm), a strong contribution to Eabs from biomass burning OA (BBOA) and less oxidized oxygenated OA (LO-OOA) sources was observed in the colder period. Moreover, we found an increase of Eabs with the ageing state of the particles, especially during the colder period. This increase of Eabs with particle ageing was associated with a larger relative amount of secondary OA (SOA) compared to POA. The availability of a long dataset at both stations from offline measurements enabled a decade-long trend analysis of Eabs at 637 nm, that showed statistically significant (s.s.) positive trends of Eabs during the warmer months at the MSY station. This s.s. positive trend in MSY mirrored the observed increase of the OC:EC ratio over time. Moreover, in BCN during the COVID-19 lockdown period in spring 2020 we observed a sharp increase of Eabs due to the observed sharp increase of the OC:EC ratio. Our results show similar values of Eabs to those found in the literature for similar background stations.
Keywords: black carbomn, coating, organic aerosol, light absorption
Published in RUNG: 10.05.2024; Views: 12; Downloads: 0
.pdf Full text (2,74 MB)
This document has many files! More...

3.
Assessment of the COVID-19 lockdown effects on spectral aerosol scattering and absorption properties in Athens, Greece
Dimitris G. Kaskaoutis, Georgios Grivas, Eleni Liakakou, Nikos Kalivitis, Giorgos Kouvarakis, Iasonas Stavroulas, Panayiotis Kalkavouras, Pavlos Zarmpas, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, original scientific article

Abstract: COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes.
Keywords: COVID-19, traffic, aerosol scattering, absorption, SSA, Greece
Published in RUNG: 10.05.2024; Views: 13; Downloads: 0
.pdf Full text (8,69 MB)
This document has many files! More...

4.
Comparing black-carbon- and aerosol-absorption-measuring instruments : a new system using lab-generated soot coated with controlled amounts of secondary organic matter
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, Konstantina Vasilatou, 2022, complete scientific database of research data

Abstract: A preprint of the publication can be found here: AMTD - Response of black carbon and aerosol absorption measuring instruments to laboratory-generated soot coated with controlled amounts of secondary organic matter (copernicus.org) (doi.org/10.5194/amt-2021-214). The files correspond to the raw data sets used for Figures 3 and 4 of the aforementioned publication. The date and start/stop time of the measurements are listed in the file "overview_measurements".
Keywords: aerosol absorption coefficient, black carbon, absorption enhancement
Published in RUNG: 19.03.2024; Views: 379; Downloads: 2
.pdf Full text (598,88 KB)
This document has many files! More...

5.
Phenomenology of organic aerosols light absorption in Europe based on in situ surface observations
Jordi Rovira, Jesús Yus-Díez, Griša Močnik, 2024, published scientific conference contribution abstract

Abstract: Both chamber and field experiments have shown that a fraction of organic aerosols (OA), called brown carbon (BrC), can efficiently absorb UV-VIS radiation with important effects on radiation balance. However, the optical properties of BrC, and its climate effects, remain poorly understood because a variety of chemical compositions are involved and their fractions vary with source and formation process. We present a phenomenology of OA light absorption in Europe using Aethalometer (AE) data. AE data were used to calculate the black carbon (BC) and BrC contribution to the total measured absorption in the UV-VIS spectral range (babs,BC(l), babsBrC(l)). Fig. 1 shows the BrC absorption at 370 nm and shows that the BrC absorption was on average higher in urban than in rural sites. Figure 1. Map of BrC absorption in rural and urban sites. At 18 out of 41 sites, simultaneous ACSM (Aerosol Chemical Speciation Monitor) data were available allowing reporting the mass absorption cross-section (MAC), the imaginary refractive index (k), the k Angström Exponent (w) of OA particles and OA sources. We compared the experimental data the with Saleh’s classification, that groups BrC in four optical classes, namely very weakly (VW-BrC), weakly (W-BrC), moderately (M-BrC) and strongly (S-BrC) absorbing BrC. Preliminary results show that both MAC and k of POA sources were higher compared to SOA sources and that BBOA (biomass burning OA) followed by CCOA (coal combustion OA) and HOA (hydrocarbon-like OA) dominated the absorption by BrC.  Data reported indicate a relationship between w and k with higher w associated to less absorbing OA particles. With this work we provide a robust experimental framework that can be used to better constrain the climate effect of OA particles represented in climate models. In our results we found that most of the measured ambient OA particles present from W to M absorption properties. Variations in OA k and w depend on the relative contribution of POA compared to SOA as also reflected by the higher k observed in winter compared to summer. Our results also demonstrate a strong variation of OA optical properties in Europe thus further confirming the complexity of OA absorption properties. This work was supported by the FOCI Project (G.A. 101056783) and ARRS P1-0385. Action Cost COLOSSAL. We thank the COLOSSAL Team for providing OA sources and AE33 data. Chen et al (2022). Env. Int. 166, 107325. Nakao et al (2013). Atm. Env. 68, 273-277. Canagaratna et al (2015). Atmos. Chem. Phys. 15, 253-272. Saleh et al (2020). Curr. Pollution Rep. 6, 90–104.
Keywords: black carbon, brown carbon, aerosol absorption coefficient
Published in RUNG: 18.03.2024; Views: 400; Downloads: 2
.pdf Full text (439,68 KB)
This document has many files! More...

6.
Aerosol light extinction coefficient closure : comparison of airborne in-situ measurements with LIDAR measurements during JATAC/CAVA-AW 2021/2022 campaigns
Marija Bervida, Jesús Yus-Díez, Luka Drinovec, Uroš Jagodič, Blaž Žibert, Matevž Lenarčič, Griša Močnik, 2024, published scientific conference contribution abstract

Abstract: The JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands resulted in a large in-situ and remote measurement dataset. Its main objective was the calibration and validation of the ESA satellite Aeolus ALADIN Lidar. The campaign also featured secondary scientific objectives related to climate change. Constraining remote sensing measurements with those provided by in-situ instrumentation is crucial for proper characterization and accurate description of the 3-D structure of the atmosphere.We present the results performed with an instrumented light aircraft (Advantic WT-10) set-up for in-situ aerosol measurements. Twenty-seven flights were conducted over the Atlantic Ocean at altitudes around and above 3000 m above sea level during intense dust transport events. Simultaneous measurements with PollyXT, and eVe ground-based lidars took place, determining the vertical profiles of aerosol optical properties, which were also used to plan the flights.The aerosol light extinction coefficient was obtained at three different wavelengths as a combination of the absorption coefficients determined using Continuous Light Absorption Photometers (CLAP) and the scattering coefficients measured with an Ecotech Aurora 4000 nephelometer, which also measured the backscatter fraction. The particle size distributions above 0.3 µm diameter were measured with two Grimm 11-D Optical Particle Size Spectrometers (OPSS). Moreover, CO2 concentration, temperature, aircraft GPS position and altitude, air and ground speed were also measured.We compare the in-situ aircraft measurements of the aerosol extinction coefficients with the AEOLUS lidar derived extinction coefficients, as well as with the ground-based eVe and PollyXT lidar extinction coefficients when measurements overlapped in space and time. The comparison was performed at the closest available wavelengths, with in-situ measurements inter/extrapolated to those of the lidar systems.In general we find an underestimation of the extinction coefficient obtained by lidars compared to the in-situ extinction coefficient. The slopes of regression lines of ground-based lidars, PollyXT and eVe, against the in-situ measurements are characterised by values ranging from 0.61 to 0.7 and R2 between 0.71 and 0.89. Comparison further suggests better agreement between Aeolus ALADIN lidar and the in-situ measurements. Relationship described by fitting the Aeolus to in-situ data is characterised by the slope value 0.76 and R2 of 0.8.The causes of better agreement of the in-situ measurements with the ALADIN lidar than with the surface based ones are being studied, with several reasons being considered: a) lower spatial and temporal resolution which homogenize the area of study in comparison with the very fine vertical variations of the aerosols, which can be detected with the surface-based measurements, impairing the comparison with highly vertically resolved ground-lidar measurements while not affecting averaged space-borne lidar; b) the effect of lower clouds/ Saharan air layers on the attenuation of the lidar signal.The presented results show the importance of the comparison of the remote with in-situ measurements for the support of the research on evolution, dynamics, and predictability of tropical weather systems and provide input into and verification of the climate models.
Keywords: LIDAR, Aeolus, ALADIN, in-situ measurements, aerosol absorption, aerosol extinction, airborne measurements
Published in RUNG: 18.03.2024; Views: 370; Downloads: 5
.pdf Full text (291,41 KB)
This document has many files! More...

7.
Contribution of black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula
Mohamed M. K. Mahfouz, Gregor Skok, Jean Sciare, Michael Pikridas, M. R. Alfarra, Shamjad Moosakutty, Bálint Alföldy, Matic Ivančič, Martin Rigler, Asta Gregorič, Rok Podlipec, Griša Močnik, 2024, original scientific article

Abstract: Discriminating the absorption coefficients of aerosol mineral dust and black carbon (BC) in different aerosol size fractions is a challenge because of BC's large mass absorption cross-section compared to dust. Ambient aerosol wavelength dependent absorption coefficients in supermicron and submicron size fractions were determined with a high time resolution. The measurements were performed simultaneously using identical systems at an urban and a regional background site in Qatar. At each site, measurements were taken by co-located Aethalometers, one with a virtual impactor (VI) and the other with a PM1 cyclone to respectively collect super-micron-enhanced and submicron fractions. The combined measurement of aerosol absorption and scattering coefficients enabled the particles to be classified based on their optical properties' wavelength dependence. The classification reveals the presence of BC internally/externally mixed with different aerosols. Helium ion microscopy images provided information concerning the extent of mineral dust in the submicron fraction. The determination of absorption coefficients during dust storms and non-dust periods was used to establish the absorption Ångström exponent for dust and BC. Non-parametric wind regression, potential source contribution function and back-trajectory analysis reveal major regional sources of desert dust associated with north-westerly winds and a minor local dust contribution. In contrast, major BC sources found locally were associated with south-westerly winds with a smaller contribution made by offshore emissions transported by north-easterly and easterly winds. The use of a pair of Aethalometers with VI and PM1 inlets separates contributions of BC and dust to the aerosol absorption coefficient.
Keywords: aerosol absorption, black carbon, mineral dust, desert dust, Arabian Peninsula
Published in RUNG: 29.02.2024; Views: 446; Downloads: 5
.pdf Full text (18,90 MB)
This document has many files! More...

8.
9.
Measuring the Aerosol Light Absorption Coefficient - a Not-So-Easy Task With Relevance for the Global and Regional Climate
Griša Močnik, 2022, unpublished invited conference lecture

Abstract: The photothermal interferometer measurement of aerosol absorption, using pump lasers (532, 1064 nm) and phase sensitive detection results in 4 and 6% measurement uncertainty. It is calibrated traceably to primary standards and thereby a potential reference.
Keywords: aerosol absorption, black carbon, climate change
Published in RUNG: 20.07.2022; Views: 1415; Downloads: 0
This document has many files! More...

10.
Measuring aerosol absorption directly - PTI methods to the rescue
Griša Močnik, unpublished invited conference lecture

Keywords: aerosol absorption, black carbon, climate change
Published in RUNG: 19.07.2022; Views: 1350; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top