Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 13 / 13
First pagePrevious page12Next pageLast page
11.
12.
Substantial brown carbon emissions from wintertime residential wood burning over France
Yunjiang Zhang, Alexandre Albinet, Jean-Eudes Petit, Véronique Jacob, Florie Chevrier, Gregory Gille, Sabrina Pontet, Eve Chrétien, Marta Dominik-Sègue, Gilles Levigoureux, Griša Močnik, Valérie Gros, Jean-Luc Jaffrezo, Olivier Favez, 2020, original scientific article

Abstract: Brown carbon (BrC) is known to absorb light at subvisible wavelengths but its optical properties and sources are still poorly documented, leading to large uncertainties in climate studies. Here, we show its major wintertime contribution to total aerosol absorption at 370 nm (18–42%) at 9 different French sites. Moreover, an excellent correlation with levoglucosan (r2 = 0.9 and slope = 22.2 at 370 nm), suggesting important contribution of wood burning emissions to ambient BrC aerosols in France. At all sites, BrC peaks were mainly observed during late evening, linking to local intense residential wood burning during this time period. Furthermore, the geographic origin analysis also highlighted the high potential contribution of local and/or small-regional emissions to BrC. Focusing on the Paris region, twice higher BrC mass absorption efficiency value was obtained for less oxidized biomass burning organic aerosols (BBOA) compared to more oxidized BBOA (e.g., about 4.9 ± 0.2 vs. 2.0 ± 0.1 m2 g−1, respectively, at 370 nm). Finally, the BBOA direct radiative effect was found to be 40% higher when these two BBOA fractions are treated as light-absorbing species, compared to the non-absorbing BBOA scenario.
Keywords: Brown carbon, Multi sites, Residential wood burning, Mass absorption efficiency, France
Published in RUNG: 20.07.2020; Views: 3075; Downloads: 0
This document has many files! More...

13.
COST AND ENERGY EFFICIENT MODERNIZATION OF SCHOOL BUILDINGS IN UKRAINE
Henrik Gjerkeš, Marjana Šijanec Zavrl, Tetiana Rapina, 2016, short scientific article

Abstract: Improvement of the energy efficiency of existing buildings in EU has great potential in the efforts to reduce energy consumption, which is with no doubt relevant issue also for Ukraine. In this article the importance of public building stock modernization was analysed with special focus on school buildings. The optimal cost methodology was used to evaluate not only the economic, but also environmental as well as social effects of school building stock modernization. In searching for the optimal level of energy-efficient modernization of school buildings in Ukraine, the European and Slovenian experiences were used. It is demonstrated that the sustainable reconstruction with the nearly-Zero Energy Building (nZEB) guidelines, as defined in EU regulations, is feasible with good results and can be recommended also for reconstruction of school buildings in Ukraine.
Keywords: cost optimum, energy efficiency, nearly zero energy building, building envelope, heating
Published in RUNG: 15.04.2016; Views: 5621; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top