Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 19
First pagePrevious page12Next pageLast page
1.
Astrophysical interpretation of energy spectrum and mass composition of cosmic rays as measured at the Pierre Auger Observatory
Eleonora Guido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The combined interpretation of the spectrum and composition measurements plays a key role in the quest for the origin of ultra-high-energy cosmic rays (UHECRs). The Pierre Auger Observatory, thanks to its huge exposure, provides the most precise measurement of the energy spectrum of UHECRs and the most reliable information on their composition, exploiting the distributions of the depth of maximum of the showers in the atmosphere. A combined fit of a simple astrophysical model of UHECR sources to the spectrum and mass composition measurements is used to evaluate the constraining power of the data measured by the Pierre Auger Observatory on the source properties. We find that our data across the “ankle” feature are well reproduced if two extragalactic populations of sources are considered, one emitting a very soft spectrum which dominates the region below the ankle, and the other taking over at energies above the ankle, with an intermediate mixed composition, a hard spectrum and a low rigidity cutoff. Interestingly, similar results can also be obtained if the medium-mass contribution at lower energy is provided by an additional galactic component.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, UHECR energy spectrum, UHECR mass composition
Published in RUNG: 24.01.2024; Views: 279; Downloads: 7
.pdf Full text (381,66 KB)
This document has many files! More...

2.
Investigation of multi-messenger properties of FR0 radio galaxy emitted ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Albert Reimer, Paolo Da Vela, F. Tavecchio, G. Bonnoli, C. Righi, 2023, published scientific conference contribution

Abstract: Low luminosity Fanaroff-Riley type 0 (FR0) radio galaxies are amongst potential contributors to the observed flux of ultra-high energy cosmic rays (UHECRs). Due to FR0s’ much higher abundance in the local universe than more powerful radio galaxies (e.g., about five times more ubiquitous at redshifts z≤0.05 than FR1s), they could provide a substantial fraction of the total UHECR energy density. In the presented work, we determine the mass composition and energy spectrum of UHECRs emitted by FR0 sources by fitting simulation results from the CRPropa3 framework to the recently published Pierre Auger Observatory data. The resulting emission spectral characteristics (spectral indices, rigidity cutoffs) and elemental group fractions are compared to the Auger results. The FR0 simulations include the approximately isotropic distribution of FR0s extrapolated from the measured FR0 galaxy properties and various extragalactic magnetic field configurations, including random and large-scale structured fields. We predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. The presented results allow for probing the properties of the FR0 radio galaxies as cosmic-ray sources using observational high-energy multi-messenger data.
Keywords: ultra-high energy cosmic rays, UHECRs, Pierre Auger Observatory, UHECR propagation, UHECR interactions, UHECR energy spectrum, UHECR mass composition, UHECR sources, Fanaroff-Riley (FR) radio galaxies, FR0 galaxies
Published in RUNG: 24.01.2024; Views: 319; Downloads: 5
.pdf Full text (573,28 KB)
This document has many files! More...

3.
Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects
Juan Manuel González, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate �−2 shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to �^(−2) be able to explain the observations. We find that a large inter-source separation �s and a large magnetic field RMS amplitude within the Local Supercluster region, such that �rms ≃ 100 nG (40 Mpc/�s) √︁25 kpc/�coh, are needed to interpret the data within this scenario, where �coh is the magnetic field coherence length.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, mass composition, extragalactic magnetic fiels
Published in RUNG: 22.01.2024; Views: 259; Downloads: 6
.pdf Full text (623,35 KB)
This document has many files! More...

4.
Studies of the UHECR Mass Composition and Hadronic Interactions with the FD and SD of the Pierre Auger Observatory
J.M. Carceller, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 10[sup]17.2 − 10[sup]19.6 eV and on the measurements of the proton-air cross section for energies up to 10[sup]18.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 10[sup]20 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties due to uncertainties in the description of hadronic interactions at ultra-high energies. We discuss this problem with respect to the properties of the muonic component of extensive air-showers as derived from the SD data.
Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers (EAS), EAS muonic component, EAS electromagnetic component, Pierre Auger Observatory, UHECR mass composition, UHECR hadronic interactions
Published in RUNG: 11.10.2023; Views: 565; Downloads: 8
.pdf Full text (128,28 KB)
This document has many files! More...

5.
Results from the Pierre Auger Observatory
Esteban Roulet, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: Some of the results on ultrahigh-energy cosmic rays that have been obtained with the Pierre Auger Observatory are presented. These include measurements of the spectrum, composition and anisotropies. Possible astrophysical scenarios that account for these results are discussed.
Keywords: ultra-high-energy cosmic rays (UHECRs), Pierre Auger Observatory, UHECR energy spectrum, UHECR anisotropies, UHECR mass composition
Published in RUNG: 11.10.2023; Views: 607; Downloads: 5
.pdf Full text (811,90 KB)
This document has many files! More...

6.
Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, original scientific article

Abstract: In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 10[sup]17 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 10[sup]18 eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum and a mix of protons and intermediate-mass nuclei. The origin of this intermediate-mass component is not well constrained and it could originate from either Galactic or extragalactic sources. To the aim of evaluating our capability to constrain astrophysical models, we discuss the impact on the fit results of the main experimental systematic uncertainties and of the assumptions about quantities affecting the air shower development as well as the propagation and redshift distribution of injected ultra-high-energy cosmic rays (UHECRs).
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, UHECR propagation, UHECR energy spectrum, UHECR mass composition
Published in RUNG: 18.08.2023; Views: 607; Downloads: 8
.pdf Full text (2,39 MB)
This document has many files! More...

7.
Recent results from the Pierre Auger Observatory
Serguei Vorobiov, 2022, published scientific conference contribution abstract (invited lecture)

Abstract: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per sq.km per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 sq.km) hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses. In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade
Published in RUNG: 23.12.2022; Views: 1239; Downloads: 7
URL Link to full text
This document has many files! More...

8.
9.
Mass composition of cosmic rays with energies from 10^17.2 eV to 10^20 eV using surface and fluorescence detectors of the Pierre Auger Observatory
Gašper Kukec Mezek, 2018, published scientific conference contribution

Abstract: Ultra-high-energy cosmic rays (UHECRs) are highly energetic particles with EeV energies, exceeding the capabilities of man-made colliders. They hold information on extreme astrophysical processes that create them and the medium they traverse on their way towards Earth. However, their mass composition at such energies is still unclear, because data interpretation depends on our choice of high energy hadronic interaction models. With its hybrid detection method, the Pierre Auger Observatory has the possibility to detect extensive air showers with an array of surface water-Cherenkov stations (SD) and fluorescence telescopes (FD). We present recent mass composition results from the Pierre Auger Collaboration using observational parameters from SD and FD measurements. Using the full dataset of the Pierre Auger Observatory, implications on composition can be made for energies above 10^17.2 eV.
Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, fluorescence telescopes, water-Cherenkov stations
Published in RUNG: 24.05.2019; Views: 3271; Downloads: 110
.pdf Full text (573,00 KB)

10.
Mass composition of ultra-high energy cosmic rays at the Pierre Auger Observatory
Gašper Kukec Mezek, 2019, doctoral dissertation

Abstract: Cosmic rays with energies above 10^18 eV, usually referred to as ultra-high energy cosmic rays (UHECR), have been a mystery from the moment they have been discovered. Although we have now more information on their extragalactic origin, their direct sources still remain hidden due to deviations caused by galactic magnetic fields. Another mystery, apart from their production sites, is their nature. Their mass composition, still uncertain at these energies, would give us a better understanding on their production, acceleration, propagation and capacity to produce extensive air showers in the Earth's atmosphere. Mass composition studies of UHECR try to determine their nature from the difference in development of their extensive air showers. In this work, observational parameters from the hybrid detection system of the Pierre Auger Observatory are used in a multivariate analysis to obtain the mass composition of UHECR. The multivariate analysis (MVA) approach combines a number of mass composition sensitive variables and tries to improve the separation between different UHECR particle masses. Simulated distributions of different primary particles are fitted to measured observable distributions in order to determine individual elemental fractions of the composition. When including observables from the surface detector, we find a discrepancy in the estimated mass composition between a mixed simulation sample and the Pierre Auger data. Our analysis results from the Pierre Auger data are to a great degree independent on hadronic interaction models. Although they differ at higher primary masses, the different models are more consistent, when combining fractions of oxygen and iron. Compared to previously published results, the systematic uncertainty from hadronic interaction models is roughly four times smaller. Our analysis reports a predominantly heavy composition of UHECR, with more than a 50% fraction of oxygen and iron at low energies. The composition is then becoming heavier with increasing energy, with a fraction of oxygen and iron above 80% at the highest energies.
Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, machine learning, multivariate analysis
Published in RUNG: 03.04.2019; Views: 4814; Downloads: 185
.pdf Full text (17,53 MB)

Search done in 0.06 sec.
Back to top