Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
In silico generation of peptides by replica exchange Monte Carlo: Docking-based optimization of maltose-binding-protein ligands
Anna Russo, Pasqualina Liana Scognamiglio, Rolando Pablo Hong Enriquez, Carlo Santambrogio, Rita Grandori, Daniela Marasco, Antonio Giordano, Giacinto Scoles, Sara Fortuna, 2015, original scientific article

Abstract: Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.
Found in: ključnih besedah
Keywords: peptides, docking, optimisation, computation, maltose binding protein, probe, ligand
Published: 12.10.2016; Views: 2371; Downloads: 96
.pdf Fulltext (4,27 MB)

2.
Structural and functional determinants of TDP-43 aggregation
Sanja Škaro, 2019, doctoral dissertation

Abstract: TDP-43 (TAR DNA-binding protein) is an hnRNP that was identified as the main component of the brain inclusions characteristically found in patients suffering of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. As an hnRNP protein, TDP-43 fulfills diverse roles in mRNA metabolism, localization and transport. Structurally, TDP-43 is composed of a well conserved N terminal domain (NTD), two RRM domains of which RRM1 is necessary for recognizing and binding to its target, UG rich RNA sequences, and the C-terminal domain (CTD) which is a Glycine rich domain. The CTD also contains a Q/N rich region that plays a key role in protein aggregation and interaction with another hnRNP proteins and polyglutamine repeats. This thesis focus on the structural determinants involved in the different TDP-43 interactions with itself and with other hnRNPs. Both the carboxyl and amino terminal domains are involved in these interactions. We have mapped the regions more relevant for the function of TDP-43 and for the aggregation process characteristic of the pathological pathway leading to neurodegeneration. We have started to further study the N-terminal domain. Previous results in our laboratory using a cellular aggregation model have shown that the N-terminal domain is also necessary for sequestering the endogenous TDP-43 into the aggregates. In particular, the intact NTD, specifically residues 1 to 77, have been shown to be needed to efficiently recruit TDP-43 monomers into these aggregates. We have extended our knowledge of NTD structure and function, by assessing the behavior of a series of proteins in which key structural features (α-helix and β-sheets) were modified and TDP-43 splicing function together with structure via NMR were analyzed. It was found that by disrupting protein secondary structure in the NTD (mutation in α-helix NTD-31V/R-32T/R) the capacity of the aggregates to sequester enough TDP-43 to induce loss of function was lost.In fact, this protein is also unable to recovery TDP-43 functionality when it is disrupted due to sequestration of the endogenous TDP-43 in add back experiments. Disturbing protein stability through substitution of residues in α-helix also affects its ability to form an active conformation. On the other hand, synthesis of hybrid peptides containing certain NTD and CTD segments was performed in order to see if they are capable to bind to the TDP-43 aggregates. However, it has been shown that these synthetic peptides have a greater ability to induce TDP-43 aggregation than to bind to them, probably due to specific functional characteristics of NTD and CTD segments used for their synthesis.The main focus of the thesis was on the C-terminal domain sequences involved in protein-protein interaction, misfolding and aggregation.A comparison of human, mouse, zebrafish, Annelida, flatworms and Drosophila showed a very strong conservation of the NTD and RRMs, but the C terminal regions of human and other TDP-43 orthologues are very different.I have studied Human and Drosophila melanogaster orthologues, because Drosophila orthologue contains different paralogs of TDP-43.Through a series of deletions and mutations it was shown that the shorter paralog of Drosophila TDP-43 (TBPH-RA) is more active than the longer one (TBPH-RC), and that this is due to a combination of two factors: 1. TBPH-RC by itself aggregates more than TBPH-RA, 2. The functionality of TBPH-RC is downregulated by intramolecular interactions in the C terminal domain. Apparently there is a cation-π interaction involving Tryptophan and Arginine in TBPH-RC that has a high relevance to the protein function and is lacking in the TBPH-RA.Overall this data has identified structural features essential for the proper function of TDP-43.In addition, we have also identified sequences that are critical in the pathological aggregation process of TDP-43 that lead to the characteristic brain inclusions in ALS and FTLD and to the loss of functionality
Found in: ključnih besedah
Summary of found: ...On the other hand, synthesis of hybrid peptides containing certain NTD and CTD segments was...
Keywords: TDP-43 structural determinants, hybrid peptides, protein-protein interactions, intramolecular interaction, cation-π interaction, Drosophila orthologues.
Published: 22.07.2019; Views: 1611; Downloads: 91
.pdf Fulltext (6,84 MB)

Search done in 0 sec.
Back to top