Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
Search for evidence of neutron fluxes using Pierre Auger Observatory data
Danelise De Oliveira Franco, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: Astrophysical neutral particles, such as neutrons, can point directly to their sources since they are not affected by magnetic fields. We expect neutron production in the immediate vicinity of the acceleration sites due to cosmic ray interactions. Hence, a high-energy neutron flux could help to identify sources of cosmic rays in the EeV range. Free neutrons, although unstable, can travel a mean distance of 9.2 kpc times their energy in EeV. Due to the neutron instability, we limit the searches to Galactic candidate sources. Since air showers initiated by a neutron are indistinguishable from those generated by a proton, we would recognize a neutron flux as an excess of events from the direction of its source. Previous searches using events with a zenith angle up to 60^◦ and energies above 1 EeV found no surplus of events that would indicate a neutron flux. We present the results of the search for evidence of high-energy neutron fluxes using a data set about three times larger than the previous work. We investigate the sky in the field of view of the Pierre Auger Observatory, narrowing down to specific directions of candidate sources. With respect to previous works, we extend the angular range up to zenith angles of 80^◦ , reaching declinations from −90^◦ to +45^◦ , and the energy range going as low as 0.1 EeV. The extension in the field of view provides exposure to the Crab Nebula for the first time.
Keywords: neutrons, cosmic ray, Pierre Auger Observatory, Crab Nebula, proton, high-energy neutron flux
Published in RUNG: 14.11.2023; Views: 621; Downloads: 5
.pdf Full text (472,98 KB)
This document has many files! More...

2.
Measurement of the Proton-Air Cross Section with Telescope Arrays Black Rock, Long Ridge, and Surface Array in Hybrid Mode.
R. Abbasi, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air cross section measurement beyond the capability of particle accelerators since 1984. The knowledge of this fundamental particle property is vital for our understanding of high energy particle interactions and could possibly hold the key to new physics. The data used in this work was collected over eight years using the hybrid events of Black Rock (BR) and Long Ridge (LR) fluorescence detectors as well as the Telescope Array Surface Detector (TASD). The proton-air cross section is determined at s√=73~TeV by fitting the exponential tail of the Xmax distribution of these events. The proton-air cross section is then inferred from the exponential tail fit and from the most updated high energy interaction models. σ^inel_p−air is observed to be 520.1±35.8 [Stat.] +25.3−42.9 [Sys.] mb. This is the second proton-air cross section work reported by the Telescope Array collaboration.
Keywords: Telescope Array, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, Xmax, proton-air cross-section, high energy particle interaction
Published in RUNG: 04.10.2023; Views: 692; Downloads: 4
.pdf Full text (1,47 MB)
This document has many files! More...

3.
Measurement of the proton-air cross section with Telescope Array's Black Rock Mesa and Long Ridge fluorescence detectors, and surface array in hybrid mode
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Ultra high energy cosmic rays provide the highest known energy source in the universe to measure proton cross sections. Though conditions for collecting such data are less controlled than an accelerator environment, current generation cosmic ray observatories have large enough exposures to collect significant statistics for a reliable measurement for energies above what can be attained in the lab. Cosmic ray measurements of cross section use atmospheric calorimetry to measure depth of air shower maximum (Xmax), which is related to the primary particle’s energy and mass. The tail of the Xmax distribution is assumed to be dominated by showers generated by protons, allowing measurement of the inelastic proton-air cross section. In this work the proton-air inelastic cross section measurement, σ_inel_p−air, using data observed by Telescope Array’s Black Rock Mesa and Long Ridge fluorescence detectors and surface detector array in hybrid mode is presented. σ_inel_p−air is observed to be 520.1 ± 35.8 [Stat.] +25.0 −40 [Sys.] mb at √s = 73 TeV. The total proton-proton cross section is subsequently inferred from Glauber formalism and is found to be σ_tot_pp = 139.4 +23.4−21.3[Stat.] +15.0−24.0[Sys.] mb.
Keywords: cosmic rays, astroparticles, proton-air cross section
Published in RUNG: 04.02.2021; Views: 2353; Downloads: 0
This document has many files! More...

4.
5.
Real-time multi-marker measurement of organic compounds in human breath: Towards fingerprinting breath
Iain R. White, Kerry A Willis, Christopher Whyte, Rebecca Cordell, Robert S Blake, Andrew J Wardlaw, 2013, original scientific article

Abstract: The prospects for exploiting proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) in medical diagnostics are illustrated through a series of case studies. Measurements of acetone levels in the breath of 68 healthy people are presented along with a longitudinal study of a single person over a period of 1 month. The median acetone concentration across the population was 484 ppbV with a geometric standard deviation (GSD) of 1.6, whilst the average GSD during the single subject longtitudinal study was 1.5. An additional case study is presented which highlights the potential of PTR-ToF-MS in pharmacokinetic studies, based upon the analysis of online breath samples of a person following the consumption of ethanol. PTR-ToF-MS comes into its own when information across a wide mass range is required, particularly when such information must be gathered in a short time during a breathing cycle. To illustrate this property, multicomponent breath analysis in a small study of cystic fibrosis patients is detailed, which provides tentative evidence that online PTR-ToF-MS analysis of tidal breath can distinguish between active infection and non-infected patients.
Keywords: Volatile Organic Compounds, breath, proton transfer reaction mass spectrometry, Cystic Fibrosis
Published in RUNG: 22.07.2019; Views: 3320; Downloads: 0
This document has many files! More...

6.
Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel
Shane Barber, Robert S Blake, Iain R. White, Paul S Monks, Fraser Reich, Stephen Mullock, Andrew M Ellis, 2012, original scientific article

Abstract: A drift tube capable of simultaneously functioning as an ion funnel is demonstrated in proton transfer reaction mass spectrometry (PTR-MS) for the first time. The ion funnel enables a much higher proportion of ions to exit the drift tube and enter the mass spectrometer than would otherwise be the case. An increase in the detection sensitivity for volatile organic compounds of between 1 and 2 orders of magnitude is delivered, as demonstrated using several compounds. Other aspects of analytical performance explored in this study include the effective E/N (ratio of electric field to number density of the gas) and dynamic range over which the drift tube is operated. The dual-purpose drift tube/ion funnel can be coupled to various types of mass spectrometers to increase the detection sensitivity and may therefore offer considerable benefits in PTR-MS work.
Keywords: Analytical performance, Detection sensitivity, Drift tube, Dynamic range, Ion funnels, Proton-transfer reaction mass spectrometry, Volatile organic compounds
Published in RUNG: 18.07.2019; Views: 2865; Downloads: 0
This document has many files! More...

7.
Particle Physics with the Pierre Auger Observatory
Tanguy Pierog, Andrej Filipčič, Samo Stanič, Darko Veberič, Danilo Zavrtanik, Marko Zavrtanik, 2014, published scientific conference contribution

Keywords: Pierre Auger Observatory, extensive air showers, hadronic interactions, proton-air inelastic cross-section
Published in RUNG: 27.06.2017; Views: 3975; Downloads: 0
This document has many files! More...

8.
9.
Extension of the measurement of the proton-air cross section with the Pierre Auger Observatory
Ralf Ulrich, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: With hybrid data of the Pierre Auger Observatory it is possible to measure the cross section of proton-air collisions at energies far beyond the reach of the LHC. Since the first measurement by the Pierre Auger Collaboration the event statistics has increased significantly. The proton-air cross section is now estimated in the two energy intervals in lg(E/eV) from 17.8 to 18 and from 18 to 18.5. These energies are chosen so that they maximise the available event statistics and at the same time lie in the region most compatible with a significant primary proton fraction. Of these data, only the 20% of most proton-like events are considered for the measurement. Furthermore, with a new generation of hadronic interaction models which have been tuned to LHC data, the model-dependent uncertainties of the measurement are re-visited.
Keywords: Pierre Auger Observatory, extensive air showers, proton-air cross section, hadronic interaction models
Published in RUNG: 03.03.2016; Views: 4529; Downloads: 196
.pdf Full text (114,02 KB)

Search done in 0.05 sec.
Back to top