Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean
Panayiotis Kalkavouras, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Maria Tombrou, Athanasios Nenes, Nikolaos Mihalopoulos, 2019, original scientific article

Abstract: A significant fraction of atmospheric particles that serve as cloud condensation nuclei (CCN) are thought to originate from the condensational growth of new particle formation (NPF) from the gas phase. Here, 7 years of continuous aerosol and meteorological measurements (June 2008 to May 2015) at a remote background site of the eastern Mediterranean were recorded and analyzed to assess the impact of NPF (of 162 episodes identified) on CCN and cloud droplet number concentration (CDNC) formation in the region. A new metric is introduced to quantitatively determine the initiation and duration of the influence of NPF on the CCN spectrum. NPF days were found to increase CCN concentrations (from 0.10 % to 1.00 % supersaturation) between 29 % and 77 %. Enhanced CCN concentrations from NPF are mostly observed, as expected, under low preexisting particle concentrations and occur in the afternoon, relatively later in the winter and autumn than in the summer. Potential impacts of NPF on cloud formation were quantified by introducing the observed aerosol size distributions and chemical composition into an established cloud droplet parameterization. We find that the supersaturations that develop are very low (ranging between 0.03 % and 0.27 %) for typical boundary layer dynamics (σw ∼0.3 m s−1) and NPF is found to enhance CDNC by a modest 13 %. This considerable contrast between CCN and CDNC response is in part from the different supersaturation levels considered, but also because supersaturation drops from increasing CCN because of water vapor competition effects during the process of droplet formation. The low cloud supersaturation further delays the appearance of NPF impacts on CDNC to clouds formed in the late evening and nighttime – which has important implications for the extent and types of indirect effects induced by NPF events. An analysis based on CCN concentrations using prescribed supersaturation can provide very different, even misleading, conclusions and should therefore be avoided. The proposed approach here offers a simple, yet highly effective way for a more realistic impact assessment of NPF events on cloud formation.
Keywords: regional NPF, CCN, cloud droplets, Eastern Mediterranean, regional background
Published in RUNG: 13.05.2024; Views: 123; Downloads: 2
.pdf Full text (3,07 MB)
This document has many files! More...

2.
Formation and growth of atmospheric nanoparticles in the eastern Mediterranean : results from long-term measurements and process simulations
Nikos Kalivitis, Veli-Matti Kerminen, Giorgos Kouvarakis, Iasonas Stavroulas, Evaggelia Tzitzikalaki, Panayiotis Kalkavouras, Nikos Daskalakis, Stelios Myriokefalitakis, Aikaterini Bougiatioti, Hanna E. Manninen, 2019, original scientific article

Abstract: Atmospheric new particle formation (NPF) is a common phenomenon all over the world. In this study we present the longest time series of NPF records in the eastern Mediterranean region by analyzing 10 years of aerosol number size distribution data obtained with a mobility particle sizer. The measurements were performed at the Finokalia environmental research station on Crete, Greece, during the period June 2008–June 2018. We found that NPF took place on 27 % of the available days, undefined days were 23 % and non-event days 50 %. NPF is more frequent in April and May probably due to the terrestrial biogenic activity and is less frequent in August. Throughout the period under study, nucleation was observed also during the night. Nucleation mode particles had the highest concentration in winter and early spring, mainly because of the minimum sinks, and their average contribution to the total particle number concentration was 8 %. Nucleation mode particle concentrations were low outside periods of active NPF and growth, so there are hardly any other local sources of sub-25 nm particles. Additional atmospheric ion size distribution data simultaneously collected for more than 2 years were also analyzed. Classification of NPF events based on ion spectrometer measurements differed from the corresponding classification based on a mobility spectrometer, possibly indicating a different representation of local and regional NPF events between these two measurement data sets. We used the MALTE-Box model for simulating a case study of NPF in the eastern Mediterranean region. Monoterpenes contributing to NPF can explain a large fraction of the observed NPF events according to our model simulations. However the adjusted parameterization resulting from our sensitivity tests was significantly different from the initial one that had been determined for the boreal environment.
Keywords: particles, number size distributions, new particle formation, regional background, SMPS, Eastern Mediterannean
Published in RUNG: 10.05.2024; Views: 139; Downloads: 2
.pdf Full text (5,87 MB)
This document has many files! More...

Search done in 0.01 sec.
Back to top